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1. Introduction 

Eigenvector spatial filtering (ESF; e.g., Griffith, 2003), which is also known as Moran’s 

eigenvector mapping (MEM; e.g., Dray et al., 2006), is a regression approach to estimate and infer 

regression coefficients in the presence of spatial dependence. Recently, ESF is extended to random 

effects ESF (RE-ESF; Murakami and Griffith, 2015). RE-ESF increases the estimation accuracy of 

regression coefficients and their standard errors with shorter computational time. RE-ESF is also 

extended to spatially varying coefficient (SVC) modeling (Murakami et al., 2017). The package 

“spmoran” provides R functions for fast estimation of ESF and RE-ESF models with/without SVCs. 

 This tutorial applies ESF and RE-ESF to a land price analysis of flood hazard. The target 

area is Ibaraki prefecture, Japan. Explained variables are logged land prices in 2015 (JPY/m2; sample 

size: 647; Figure 1). Explanatory variables are as listed in Table 1. All these variables are 

downloaded from the National Land Numerical Information download service (NLNI; 

http://nlftp.mlit.go.jp/ksj-e/index.html).  

The following is a data image, in which “px” and “py” are spatial coordinates: 

 

> data <- read.csv( "data.csv" ) 

> data[ 1:6, ] 

 px py ln_price station tokyo city flood 

1 19235.25 -4784.562 10.126631 4.0109290 43.38504 1 1.5 

2 16450.37 -8782.851 10.835652 0.8977986 43.38504 1 0.0 

3 17673.30 -8351.802 10.633449 0.5596742 43.38504 1 0.0 

4 17824.50 -7704.343 9.878170 0.8504618 43.38504 0 0.0 

5 67334.31 58001.724 10.122623 3.1660661 140.95839 1 0.0 

6 68929.42 55028.751 9.952278 2.5008292 140.95839 1 1.5 

 

Figure 1. Anticipated inundation depth (left) and officially assessed land prices in 2015 (right) in the 

Ibaraki prefecture 
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Table 1. Explanatory variables 

Variables Description 

tokyo Logarithm of the distance from the nearest railway station to Tokyo Station [km] 

station Logarithm of the distance to the nearest railway station [km] 

flood Anticipated inundation depth [m] 

city 1 if the site is in an urban promotion land and 0 otherwise 

 

ESF/RE-ESF are implemented in the following two steps: 

- Extraction of Moran’s eigenvectors (see Section 2); 

- Parameter estimation of the ESF/RE-ESF model (see Sections 3 and 4). 

Sections 2, 3 and 4 explain implementation of these steps, while Section 5 explains how to accelerate 

the computation. 

 

 

2. Extraction of Moran’s eigenvectors 

Consider a doubly-centered spatial connectivity matrix, MCM, where C is a symmetric 

spatial proximity matrix whose diagonals are zeros, M = I – 11'/N is a centering operator, where I is 

an identity matrix, and 1 is a vector of ones, and N is the sample size. The eigenvectors, E = {e1,…, 

eN}, of MCM furnish all possible distinct map pattern descriptions of latent spatial dependence, with 

each level being indexed by the Moran coefficient (MC; Griffith, 2003; Tiefelsdorf and Griffith, 

2007). Eigenvectors corresponding to large positive eigenvalue describe map patterns with greater 

positive spatial dependence (i.e. greater positive MC), whereas eigenvectors corresponding to 

negative eigenvalue describe map patterns with negative spatial dependence. As positive spatial 

dependence is dominant in most real-world cases, only eigenvectors with positive eigenvalues are 

considered in many applied studies. 

The function meigen extracts eigenvectors corresponding to positive eigenvalue (i.e. λl > 0, 

where λl is the l-th eigenvalue)1. The command is as follows: 

 

> coords <- data[ ,c( "px", "py" ) ] 

> meig <- meigen( coords = coords ) 

 

Calculated eigenvectors and eigenvalues are displayed by commanding meig$sf and meig$ev, 

respectively. By default, C is given by the matrix whose (i, j)-th element equals exp(–di,j/r), where                                                   1 For the distance-based C, it is standard to set the threshold by λl > 0, which attempts to consider all 
elements describing positive spatial dependence. 
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di,j is the Euclidean distance between sites i and j, and r is the longest distance in the minimum 

spanning tree covering the sample sites (Dray et al., 2006; Murakami and Griffith, 2015). 

The distance-based C may be replaced with other types of spatial connectivity matrix. In 

this case, user must construct the matrix a priori. For example, the following command employs the 

4-nearest-neighbor-based C: 

 

> library( spdep ) 

> col.knn <- knearneigh( coordinates( coords ), k = 4 ) 

> cmat  <- nb2mat( knn2nb( col.knn ), style = "B" ) 

> meigB <- meigen( cmat = cmat ) 

 

If the spatial connectivity matrix is not symmetric like the 4-nearest neighbor-based C, meigen 

symmetrizes it by taking{C + t(C)}/2. In cases with binary connectivity-based C (e.g. 

proximity-based C; k-nearest-neighbor-based C), λl /λ1 > 0.25 is a standard threshold for the 

eigenvector extraction2. The thresholding is implemented by the following command: 

 

> meigB <- meigen( cmat = cmat, threshold = 0.25 ) 

 

The eigen-decomposition can be very slow for large samples. To accelerate the 

computation, the function meigen_f approximates the eigenvectors by applying the Nystrom 

extension, which is a dimension reduction technique (Murakami and Griffith, 2017)3. The command 

is as follows: 

 

> meig_f <- meigen_f( coords = coords ) 

 

Just like meigen, meig_f$sf and meig_f$ev return approximated eigenvectors and eigenvalues, 

respectively. By default, the first 200 eigenvectors are approximated4. While meigen takes 243.79 

seconds for the exact eigen-decomposition, meigen_f takes only 0.38 seconds (see Section 5 for 

further details). 

                                                   2 The threshold λl /λ1 > 0.25 attempts to capture roughly 5% of the variance in explained variables 
attributable to positive spatial dependence (Griffith and Chun, 2014). 3 This approximation is available only for the distance-based C. 4 Consideration of 200 eigenvectors is recommended because Murakami and Griffith (2017) show 
that the approximation error in regression coefficients is quite small when 200 (or more) 
eigenvectors are considered while the error increases in cases with fewer than 200 eigenvectors. 
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3. ESF and RE-ESF models 

3.1. ESF model 

 The linear ESF model is formulated as follows: 

y = Xȕ + EȖ + ε,           ε ~ N(0, ı2I), 

where E is a matrix whose l-th column is the l-th eigenvector, el, and Ȗ is a vector of coefficients. 

This model is identical to the standard linear regression model. 

The ESF model is estimated using the following steps: (i) eigenvectors whose eigenvalue 

exceeds a threshold are extracted from MCM; (ii) stepwise eigenvector selection is performed; (iii) 

the ESF model with selected eigenvectors is estimated by ordinary least squares. 

The following command estimates the linear ESF model. In step (i), following many ESF 

studies (Griffith, 2003; Tiefelsdorf and Griffith, 2007), eigenvectors whose eigenvalue fulfills λl /λ1 > 

0.25 are extracted from a binary connectivity-based C (4-nearest-neighbor-based C; see Section 2): 

 

> y <- data[ ,"ln_price" ] # Explained variables 

> x <- data[ ,c( "station", "tokyo", "city", "flood " ) ] # Explanatory variables 

> meig <- meigB #Moran’s eigenvectors (knn-based C) 

> e_res <- esf( y = y, x = x, meig = meig, vif = 10, fn = "r2" ) 

 

To cope with possible multicollinearity, eigenvectors are selected so that the variance inflation factor 

(VIF), which is an indicator of multicollinearity, does not exceed 10. It is implemented by setting vif 

= 10, whereas VIF is not considered by default. The eigenvector selection is performed by the 

adjusted R2 maximization (fn = "r2"; default). Akaike information criterion (AIC) minimization (fn = 

"aic") or Bayesian Information criterion (BIC) minimization (fn = "bic"). Alternatively, all 

eigenvectors are considered without selecting them by setting fn = "all". 

 When fn = "r2", the coefficient estimates yield: 

 

> e_res$b 

 Estimate SE t_value p_value 

(Intercept) 9.932080e+00 0.0587240255 169.13146372 0.000000e+00 

station -6.911515e-02 0.0065601988 -10.53552610 5.070594e-24 

tokyo -2.846888e-05 0.0004214075 -0.06755664 9.461599e-01 

city 6.738630e-01 0.0360500253 18.69244166 2.121536e-62 

flood 2.795299e-02 0.0142681894 1.95911280 5.053884e-02 

 

Station (-) and city (+) are statistically significant at the 0.1% level. It is verified that urban areas 
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with good access to a railway station have a higher land price than other areas. We can see that flood 

is positively significant at the 10% level. This result suggests that influence from flood disaster, 

which is expected to be negative, is not appropriately reflected to land price. 

VIF values are displayed by the following command: 

 

> e_res$vif 

 VIF 

station  1.367917 

tokyo    1.225594 

city     1.282930 

flood    1.208189 

sf4      1.167728 

sf9      1.017697 

sf12     1.142611 

sf31     1.084662 

sf33     1.032077 

sf45     1.035118 

sf32     1.095973 

sf26     1.012234 

sf6      1.059948 

sf20     1.016059 

 

The following command displays error statistics, including residual standard error (residual_SE), 

adjusted R2 (adjR2), log-likelihood (logLik), AIC, BIC, and degrees of freedom (DF): 

 

> e_res$e 

 stat 

resid_SE 0.3542671 

adjR2 0.6987400 

logLik -239.0702859 

AIC 510.1405718 

BIC 581.6981125 

 

While we have discussed ESF with binary connectivity-based C, which is popular in 

regional science, ESF with distance-based C, which is popular in ecology, is implemented as 

follows: 
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> meig <- meigen( coords=coords ) #Moran’s eigenvectors (distance-based C) 

> e_res <- esf( y=y, x=x, meig=meig, fn = "r2" ) 

 

The distance-based ESF is often referred to as MEM or a principal coordinate neighborhood matrix 

(PCNM) (see Legendre and Legendre, 2012). 

A major disadvantage of ESF is the computational cost. To cope with this problem, 

Murakami and Griffith (2017) develops a fact approximation. It is implemented by the following 

command: 

 > meig_f <- meigen_f( coords = coords ) 
> e_res <- esf( y = y, x = x, meig = meig_f, fn = "all" ) 

 

Here, all eigenvectors in meig_f are considered without selecting them by setting fn = "all". It is 

sufficient for thousands or more samples (Murakami and Griffith, 2017). 

 

3.2.RE-ESF model 

The RE-ESF model is formulated as follows: 

y = Xȕ + EȖ + ε,   Ȗ ~ N(0, ıȖ
2Λ(α)),  ε ~ N(0, ı2I). 

Unlike ESF, Ȗ is given by a vector of random coefficients: Ȗ ~ N(0, ıȖ
2Λ(α)). Λ(α) is a diagonal 

matrix whose elements are the eigenvalues, which are multiplied by α. ıȖ
2 and α represent the 

variance and the scale of the spatially dependent component; large α implies global-scale spatial 

variation, while small α implies local variation. These parameters act as shrinkage parameters 

controlling variance inflation. 

The RE-ESF model is estimated using the following steps: (i) eigenvectors whose 

eigenvalue exceeds a threshold are extracted from MCM; (ii) parameters are estimated by the 

maximum likelihood (ML) method or the restricted maximum likelihood (REML) method. REML 

estimation is preferable because it accounts for the degrees of freedom lost by estimating the 

regression coefficients. 

The REML estimation is implemented by the following command: 

 

> meig <- meigen( coords = coords ) #Moran’s eigenvectors (distance-based C) 

> r_res <- resf( y = y, x = x, meig = meig, method = "reml" ) 

 

ML is implemented by replacing method = "reml" with method = "ml". 
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Estimated coefficients are displayed as follows: 

 

> r_res$b 

 Estimate SE t_value p_value 

(Intercept) 9.9902998898 0.169833051 58.8242385 0.000000e+00 

station -0.0792859163 0.009598674 -8.2600901 8.881784e-16 

tokyo -0.0003715008 0.001795810 -0.2068709 8.361807e-01 

city 0.6857752216 0.036926493 18.5713608 0.000000e+00 

flood -0.0043670379 0.014784271 -0.2953841 7.678025e-01 

 

Just like the estimates for ESF, station (-) and city (+) are statistically significant, and tokyo is not. In 

contrast, unlike ESF, flood is not statistically significant. Because RE-ESF tends to outperform ESF 

in terms of the estimation accuracy of regression coefficients and their standard errors (Murakami 

and Griffith, 2015), the results of RE-ESF might be more reliable. Error statistics are extracted by 

the following command: 

 

> r_res$e 

 stat 

resid_SE 0.3116825 

adjR2(cond) 0.7649824 

rlogLik -262.9627231 

AIC 543.9254462 

BIC 584.1765628 

 

where adjR2(cond) is the adjusted conditional R2, and rlogLik is the restricted log-likelihood. 

rlogLik is replaced with loglik, which denotes log-likelihood, if method = "ml". It is important to 

note that, when REML is used, AIC and BIC are comparable only with models with the same 

explanatory variables. resf also returns the estimated shrinkage parameters as follows: 

 

> r_res$s 

 par 

shrink_sf_SE 0.4337118 

shrink_sf_alpha 0.2449076 

 

where shrink_sf_SE and shrink_sf_alpha are ıγ and α, respectively. The standard error of the 
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spatially dependent component (shrink_sf_SE = 0.4337118)5 is greater than the residual standard 

error (resid_SE = 0.3116825). In other words, substantial spatial dependent variations, which are 

ignored if the linear regression model is estimated, are captured by EȖ. shrink_sf_alpha is smaller 

than one. This implies that coefficients on each eigenvector are shrunk comparatively equally, 

irrespective of their corresponding eigenvalues. The resulting EȖ has local-scale spatial variations 

relative to EȖ with large shrink_sf_alpha. 

 resf performs the computationally efficient ML/REML estimation of Murakami and 

Griffith (2017). The command is as follows: 

 > meig_f <- meigen_f( coords = coords ) 
> r_res <- resf( y = y, x = x, meig = meig_f, method = "reml" ) 

 

 

4. Extended models 

4.1.Spatially varying coefficients (SVC) model 

Murakami et al. (2017) suggest that a RE-ESF-based SVC modeling outperforms 

geographically weighted regression (GWR), which is the standard approach for SVC modeling, in 

terms of coefficient estimation accuracy and computational time. 

The RE-ESF-based SVC model is formulated as follows: 

y = Σkxk ȕk + EȖ + ε,   ȕk = ȕk,01+EȖk,   Ȗk ~ N(0, ıȖ,k
2Λ(αk)),   ε ~ N(0, ı2I), 

where ȕk is the vector of SVCs on the kth explanatory variables, xk. ȕk consists of the constant 

component, ȕk,01, and the spatially varying component, EȖk. The latter is modeled by Moran’s 

eigenvectors, E, and their random coefficients, Ȗk ~ N(0, ıȖ,k
2Λ(αk)). Λ(αk) is a diagonal matrix 

whose elements are the eigenvalues, which are multiplied by αk. ıȖ,k
2 denotes the variance of the 

spatially dependent component, EȖk, whereas αk denotes the spatial scale of the component; 

large/small αk implies global/local-scale spatial variation explained by EȖk. These parameters act as 

shrinkage parameters controlling variance inflation. An interesting point is that, unlike GWR, the 

RE-ESF-based approach estimates the spatial scale of each SVC using αk. 

 

 

                                                   
5 The following relationship holds: Var[EȖ]= EȖȖ' E' = ıȖ

2EΛ(α) E' = 
 MĈ2

, where 

MĈ  is 

MCαM approximated by the eigenvectors in E. Hence, ıȖ
2 denotes the variance of the spatially 

dependent component. 
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In this tutorial, coefficients on station, city, and flood are allowed to vary across 

geographical space whereas coefficients on Tokyo are not. The command for the SVC modeling is as 

 

> xv <- x[ ,c( "station", "city", "flood" ) ] #x with spatially varying coefficients 

> xconst <- x[ , "tokyo" ] #x with constant coefficients 

> meig <- meigen( coords = coords ) #Moran’s eigenvectors (distance-based C) 

> rv_res  <- resf_vc( y = y, x = xv, xconst = xconst, meig = meig, method = "reml" ) 

 

The constant coefficient estimate for tokyo is returned by the following command: 

 

> rv_res$b 

 Estimate SE t_value p_value 

V1 -0.0009924332 0.001782719 -0.5566962 0.5779578 

 

As with the output from the basic RE-ESF model, tokyo is statistically insignificant. Considering 

computational cost and stability, it might be preferable to employ SVCs on at most around four 

explanatory variables, and constant coefficients on the other explanatory variables (see Section 5). 

 Estimated SVCs and their p-values are displayed by the following command: 

 

> rv_res$b_vc[ 1:6, ] 

 (Intercept) station city flood 

1 9.875385 -0.06311678 0.5690735 0.006637360 

2 10.278009 -0.11503321 0.8255947 0.005446833 

3 10.173544 -0.10025270 0.7743310 0.006120595 

4 10.138267 -0.09395701 0.7445319 0.006262945 

5 10.207279 -0.10122246 0.5212322 -0.058020901 

6 10.258219 -0.08688370 0.5006614 -0.059386765 

 

> rv_res$p_vc[ 1:6, ] 

 (Intercept) station city flood 

1 0 0.288107321 1.324063e-06 0.76500129 

2 0 0.006000605 6.344747e-11 0.79813709 

3 0 0.012536479 6.735013e-10 0.77200809 

4 0 0.019306686 3.431317e-10 0.76597759 

5 0 0.058577563 5.667240e-05 0.04008828 

6 0 0.124107522 1.405513e-03 0.15243568 



11  

 

They can be summarized as follows: 

 

> summary( rv_res$b_vc ) 

 (Intercept) station city flood  

 Min. : 8.909 Min. : -0.21020 Min. : -0.02115 Min. : -0.066797 

 1st Qu.: 9.831 1st Qu.: -0.15448 1st Qu.: 0.57226 1st Qu.: -0.049578 

 Median : 10.062 Median : -0.12184 Median : 0.68319 Median : -0.013046 

 Mean : 10.061 Mean : -0.11572 Mean :  0.67039 Mean : -0.021668 

 3rd Qu.: 10.242 3rd Qu.: -0.07764 3rd Qu.:  0.81286 3rd Qu.: 0.003591 

 Max. : 10.946 Max. :  0.06522 Max. :  1.06872 Max. : 0.009442 

 

> summary( rv_res$p_vc ) 

 (Intercept) station city flood  

 Min. : 0 Min. : 0.000001 Min. : 0.0000000 Min. : 0.003934 

 1st Qu.: 0 1st Qu.: 0.001426 1st Qu.: 0.0000001 1st Qu.: 0.086623 

 Median : 0 Median : 0.010549 Median : 0.0000068 Median : 0.585556 

 Mean : 0 Mean : 0.123792 Mean : 0.0171369 Mean : 0.495177 

 3rd Qu.: 0 3rd Qu.: 0.175201 3rd Qu.: 0.0006345 3rd Qu.: 0.853780 

 Max. : 0 Max. :  0.945239 Max. : 0.9582583 Max. : 0.995845 

 

The result suggests that the spatially varying intercept and SVCs on city are positively significant 

across the target area. station is negatively significant in many sample sites, and flood is statistically 

insignificant in most sample sites. 

 Figure 2 displays the estimated coefficients and their statistical significance. Estimated 

SVCs on station demonstrate that the distance to a railway station has a significant influence on land 

price in areas along railways. SVCs on city are positively significant across the target area. SVCs on 

flood suggest that flood risk is negatively significant around Mito city, which is the prefectural 

capital. Mito city has a long history as a castle town. The negative sign on flood might be because 

Mito city has adapted to flood disaster in its long history. 
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SVCs (station)                 SVCs (city)                 SVCs (flood) 

 
p-values (station)              p-values (city)               p-values (flood) 

Figure 2. Estimated SVCs and their p-values (the spatially varying intercept is omitted) 

 

 Just like resf, resf_vc returns shrinkage parameter estimates for SVCs. In our case, the 

estimates are as follows: 

 

> rv_res$s 

 (Intercept) station city flood 

Shrink_sf_SE 0.4562311 0.0820578615 0.30293756 0.04153263 

Shrink_sf_alpha 0.1472938 0.0001043149 0.04450748 1.59444026 

 

Shrink_sf_SE summarizes the estimated standard errors, ıȖ,k, for each SVC, and Shrink_sf_alpha 

summarizes the estimated αk parameters. Large αk values imply strong shrinkage for local variations. 

For example, SVCs on flood have a global map pattern due to the large αk value while SVCs on 

station have a local pattern due to the small αk value. Thus, the αk parameter controls the spatial scale 
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of the k-th SVCs. 

 Error statistics for the SVC model are displayed by the following command although 

logLik and AIC are reference values because we apply the REML estimation: 

 

> r_res$e 

 stat 

resid_SE 0.2637017 

adjR2(cond) 0.8312410 

rlogLik -230.4469132 

AIC 482.8938264 

BIC 532.0896357 

 

4.2.Spatially filtered unconditional quantile regression (SF-UQR) 

While the conventional conditional quantile regression (CQR) estimates the influence of xk 

on the Ĳ-th “conditional” quantile of y, qĲ(y|xk), the unconditional quantile regression (UQR; Firpo et 

al., 2009) estimates the influence of xk on the “unconditional” quantile of y, qĲ(y). 

Suppose y and xk represent land price and accessibility, respectively. UQR estimates the 

influence of accessibility on land price in each price range. This interpretation does not hold for 

CQR, because it quantifies the influence of accessibility on land prices conditional on xk (see, Figure 

3). Thus, UQR coefficients are more interpretable than CQR coefficients. 

In this context, Murakami and Seya (2017) developed the spatial filter UQR (SF-UQR). 

The SF-UQR model is formulated as follows: 

rĲ = XȕĲ + EȖĲ + ε,   ȖĲ ~ N(0, ıȖ,Ĳ
2Λ(αĲ)),   ε ~ N(0, ıĲ

2I), 

where rĲ is a vector whose i-th element equals the re-centered influence function (RIF) for the i-th 

explained variable, yi. The SF-UQR is a UQR considering spatial dependence. 

 

.  

Figure 3: CQR and UQR coefficients. Allows illustrate their coefficients on the 0.9 quantile. CQR 

coefficient equals ∂qĲ(y|xk)/∂xk whereas UQR coefficient equals ∂qĲ(y)/∂xk. 
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The spmoran package provides the resf_qr function to estimate the SF-UQR model. The 

command is as follows: 

 

> qr_res  <- resf_qr( y = y, x = x, meig = meig, boot = T ) 

 

If boot = T, a semiparametric bootstrapping is performed to estimate the standard errors of UQR 

coefficients, and these are not calculated if boot = F. This function returns parameters estimated at 

0.1, 0.2, ..., 0.9 quantiles by default. The quantile(s) can be specified by using an argument tau; for 

example, parameters at the 0.22 quantile are estimated by assigning tau = 0.22.  

The computational complexity for the bootstrap iterations does not depend on the sample 

size, N (see, Murakmai and Griffith, 2017), but it depends on the number of eigenpairs, L, which 

grows as N increases. Hence, for large samples, it is useful to restrict L as follows: 

 

> meig <- meig( coords, enum = 200 ) 

> qr_res <- resf_qr( y = y, x = x, meig = meig, boot = T ) 

 

For very large N, which prohibits the eigen-decomposition, the following eigen-approximation 

would be useful: 

 

> meig <- meig_f( coords )  #It approximates the first 200 eignen-pairs by default 

 

UQR coefficients estimated by the resf_qr function can be visualized by the plot_qr 

function. The commands to plot estimated coefficients for the first five explanatory variables are as 

follows: 

 

> plot_qr( qr_res, 1 ) 

> plot_qr( qr_res, 2 ) 

> plot_qr( qr_res, 3 ) 

> plot_qr( qr_res, 4 ) 

> plot_qr( qr_res, 5 ) 

 

The numbers 1 to 5 specify which regression coefficients are plotted (1: intercept). The resulting 

plots are as follows: 
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Figure 4. Outputs from the plot_qr function (regression coefficients). Solid lines are coefficient 

estimates and gray areas are their 95% confidential intervals. 

 

 

On the other hand, the standard errors for the residual spatial dependent component (shrink_sf_SE) 

are plotted by assigning pnum = 1 and par = "s", while the scale (degree) parameters for the 

component (shrink_sf_alpha) are plotted by assigning pnum = 2 and par = "s". The commands and 

the outcomes are as follows: 

 

> plot( qr_res, 1, “s” ) 

> plot( qr_res, 2, “s” ) 

 

 
Figure 5. Outputs from the plot_qr function (shrinkage (variance) parameters). Solid lines are 

coefficient estimates and gray areas are their 95 % confidential intervals. 
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Parameter estimates are displayed by the following commands: 

 
> res$b 

> res$s 

 
When boot = T, parameter estimates, lower and upper bounds for their 95% confidential intervals, 

and p-values are returned by the following command: 

 
> res$B 

> res$S 

 
Error statistics, including the residual standard error and the adjusted quasi conditional R2, are 

displayed as follows: 
 
> res$e 

 tau=0.1 tau=0.2 tau=0.3 … tau=0.9 

resid_SE 0.93164 0.67819 0.58475 … 1.0025 

quasi_adjR2(cond) 0.43749 0.57931 0.57318 … 0.4258 

 
 

5. Tips for fast computation 

5.1.Eigen-decomposition 

As discussed, meigen_f performs a fact eigen-approximation, and extracts the first 200 

eigenvectors by default. The computation is further accelerated by reducing number of approximated 

eigenvectors. It is achieved by setting enum by a positive integer less than 200. For example, in the 

case with 5000 samples and enum = 200 (default), 100, and 50, computational times are as follows: 

 

> coords_test  <- cbind( rnorm( 5000 ), rnorm( 5000 ) ) 

 

-----------------CP time (without approximation) ----------------- 

> system.time( meig_test <- meigen( coords = coords_test ) ) 

user system elapsed 

242.28 1.44 243.79 
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-----------------CP time (with approximation) ---------------------- 

> system.time( meig_test200 <- meigen_f( coords = coords_test ) 

user system elapsed 

0.37 0.00 0.38 

> system.time( meig_test100 <- meigen_f( coords = coords_test, enum = 100 ) ) 

user system elapsed 

0.15 0.00 0.16 

> system.time( meig_test50 <- meigen_f( coords = coords_test, enum = 50 ) ) 

user system elapsed 

0.08 0.00 0.08 

 

Figure 3 maps the calculated 1st, 10th, and 100th eigenvectors. It is important to note that, 

while approximated and exact eigenvectors can have different map patterns respectively, both of 

them describe patterns in similar spatial scales. In other words, in both cases, 1st eigenvectors 

describe global map patterns, 10th medium-scale patterns, and 100th local patterns.    
1st (meigen)                10th (meigen)               100th (meigen)     
1st (meigen_f)             10th (meigen_f)              100th (meigen_f) 

Figure 3. The 1st, 10th, and 100th eigenvectors extracted from meigen and meigen_f 
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5.2.Parameter estimation 

The basic ESF model is estimated computationally efficiently by setting fn = "all" in the 

function esf. The RE-ESF model is estimated by small computational cost by the function resf, by 

default. 

The RE-ESF-based SVC model can also be estimated computationally efficiently by the 

resf_vc function. To achieve this, (i) the number of eigen-pairs in meig must not be large. It is 

achieved by setting enum = 200 that is sufficiently small and approximation error is sufficiently 

small (Murakami and Griffith, 2017). Besides, the number of SVCs must also be small. It is fulfilled 

by including at most about 4 explanatory variables into x, and the others into xconst. After all, the 

following command implements the SVC model computationally efficiently: 

 

-----------------Eigen-decomposition ----------------- 
> meig <- meigen( coords = coords, enum = 200)    # slow, but exact 

or alternatively, 

> meig <- meigen_f( coords = coords )       # fast, but approximation 

 

-----------------Parameter estimation ----------------- 

> xv <- x[ , c( "x1", "x2", "x3", "x4" ) ] # at most about 4 explanatory variables 

> xconst <- x[ , c( "x5", "x6", "x7", "x8","x9", "x10") ]  # the other explanatory variables 

> rv_res  <- resf_vc( y = y, x = xv, xconst = xconst, meig = meig, method = "reml" ) 

 
The SF-UQR model requires a bootstrapping to estimate confidential intervals for the coefficients. 

However, computational cost for the iteration does not dependent on sample size, but only on the 

number of eigenvectors in meig (see, Murakami and Seya, 2017). That is, the SF-UQR is applicable 

to large data if only meig is defined just as mentioned above. 

 
 

6. Future directions 

 I plan to enrich functions relating Moran’s eigenvector-based regression approach 

gradually. 
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