Introduction to stream: An extensible Framework
for Data Stream Clustering Research with R

Matthew Bolanos John Forrest
Southern Methodist University Microsoft

Michael Hahsler
Southern Methodist University

Abstract

In recent years, data streams have become an increasingly important area of research
for the computer science, database and statistics communities. Data streams are ordered
and potentially unbounded sequences of data points created by a typically non-stationary
generation process. Common data mining tasks associated with data streams include clus-
tering, classification and frequent pattern mining. New algorithms are proposed regularity
and it is important to evaluate them thoroughly under standardized conditions.

In this paper we introduce stream, a general purpose tool that includes modeling and
simulating data streams as well an extensible framework for implementing, interfacing
and experimenting with algorithms for various data stream mining tasks. In this paper
we describe the architecture of stream and and focus on its use for data stream clustering.
stream was implemented with extensibility in mind and will be extended in the future to
cover additional data stream mining tasks like classification and frequent pattern mining
as well.

Keywords: data stream, data mining, clustering.

1. Introduction

Typical statistical and data mining methods (e.g., clustering, regression, classification and
frequent pattern mining) work with “static” data sets, meaning that the complete data set
is available as a whole to perform all necessary computations. Well known methods like k-
means clustering, linear regression, decision tree induction and the APRIORI algorithm to
find frequent itemsets scan the complete data set repeatedly to produce their results (Hastie,
Tibshirani, and Friedman 2001). However, in recent years more and more applications need to
work with data which is not static, but are the result of a continuous data generation process
which might even evolve over time. Some examples are web click-stream data, computer
network monitoring data, telecommunication connection data, readings from sensor nets and
stock quotes. These types of data are called a data streams and dealing with data streams
has become an increasingly important area of research (Babcock, Babu, Datar, Motwani, and
Widom 2002; Gaber, Zaslavsky, and Krishnaswamy 2005; Aggarwal 2007). Early on, the

2 Introduction to stream

statistics community also started to see the emerging field of statistical analysis of massive
data streams (see Keller-McNulty (2004)).

A data stream can be formalized as an ordered sequence of data points

Y = <Y1aYQ,YSa .. '>7

where the index reflects the order (either by explicit time stamps or just by an integer reflecting
order). The data points themselves can be simple vectors in multidimensional space, but can
also contains nominal/ordinal variables, complex information (e.g., graphs) or unstructured
information (e.g., text). The characteristic of continually arriving data points introduces an
important property of data streams which also poses the greatest challenge: the size of a data
stream is unbounded. This leads to the following requirements for data stream processing
algorithms:

¢ Bounded storage: The algorithm can only store a very limited amount of data to
summarize the data stream.

e Single pass: The incoming data points cannot be permanently stored and need to be
processed at once in the arriving order.

¢ Real-time: The algorithm has to process data points on average at least as fast as the
data is arriving.

e Concept drift: The algorithm has to be able to deal with a data generation process
which evolves over time (e.g., distributions change or new structure in the data appears).

Most existing algorithms designed for static data are not able to satisfy all these requirements
and thus are only usable if techniques like sampling or time windows are used to extract small,
quasi-static subsets. While these approaches are important, new algorithms to deal with the
special challenges posed by data streams are needed and have been introduced over the last
decade.

Even though R represents an ideal platform to develop and test prototypes for data stream
mining algorithms, R currently does only have very limited infrastructure for streaming data.
The following are some packages on CRAN related to streams:

Data sources: Random numbers are typically created as a stream (see e.g., rstream (Ley-
dold 2012) and rlecuyer (Sevcikova and Rossini 2012)). Financial data can be obtained
via packages like quantmod (Ryan 2013). Intra-day price and trading volume can be
considered a data stream. As Twitter became popular, packages like streamR (Barbera
2014) and twitteR (Gentry 2013) provide interfaces to the Twitter web API to retrieve
life Twitter feeds.

Statistical models: Several packages provide algorithms for iteratively updating statistical
models to typically deal with very large data. For example, factas (Bar 2014) implements
iterative versions of correspondence analysis, PCA, canonical correlation analysis and
canonical discriminant analysis. For clustering birch (Charest, Harrington, and Salibian-
Barrera 2012) implements BIRCH, a clustering algorithm for very large data sets. The
algorithm maintains a clustering feature tree which can be updated in an iterative

Matthew Bolanos, John Forrest, Michael Hahsler

fashion. Although BIRCH was not developed as a data stream clustering algorithm, it
still has some characteristics needed for data streams. In rEMM (Hahsler and Dunham
2014) we implemented a stand-alone version of a pure data stream clustering algorithm
called tNN enhanced with a methodology to model a data stream’s temporal structure.
The clustering part is also available in the stream framework.

Distributed computing frameworks: With the development of Hadoop, distributed com-
puting frameworks became very popular to solve large scale computational problems.
In R HadoopStreaming (Rosenberg 2012) is available to use R script within the Hadoop
framework. However, contrary to the word streaming in its name, HadoopStreaming
does not support data streams. As Hadoop itself, HadoopStreaming is used for batch
processing. Streaming in the name refers only to the internal usage of pipeslines for
“streaming” the input and output between the Hadoop framework and the used R scripts.
A distributed framework for realtime computation is Storm developed by the Apache
Incubator (2014). Storm builds on the idea to put together a computing topology from
spouts (data sources) and bolts (simple computational units). RStorm (Kaptein 2013)
implements a simple, non-distributed version of Storm. At the time of writing this
paper, the topology has a single spout which contains a static data.frame as input.

Even in the stream-related packages discussed above, data is still represented by data.frames
or matrices which is suitable for static data but not ideal to represent streams. In this paper
we introduce the package stream which provides a framework to represent and process data
streams and use them to develop, test and compare data stream algorithms in R. We include
an initial set of data stream generators and data stream clustering algorithms in this package
with the hope that other researchers will use stream to develop, study and improve their own
algorithms.

The paper is organized as follows. We briefly review data stream mining in Section 2. In Sec-
tion 3 we cover the stream framework including the design of the class hierarchy to represent
different data streams and data stream clustering algorithms. Evaluation of data stream clus-
tering algorithms is discussed in Section 4. In Section 5 we provide comprehensive examples.
Extending the framework with new data stream sources and algorithms is briefely described
in Section 6 and conclude with Section 7.

2. Data Stream Mining

Due to advances in data gathering techniques, it is often the case that data is no longer viewed
as a static collection, but rather as a dynamic set, or stream, of incoming data points. The
most common data stream mining tasks are clustering, classification and frequent pattern
mining (Aggarwal 2007; Gama 2010). The rest of this section will give a brief introduction
of these data stream mining tasks. We will focus on clustering, since this is also the current
focus of stream.

2.1. Clustering

Clustering, the assignment of data points to (typically k) groups such that point within each
group are more similar to each other than to points in different groups, is a very basic unsu-
pervised data mining task. For static data sets methods like k-means, k-medians, hierarchical

4 Introduction to stream

clustering and density-based methods have been developed among others (Jain, Murty, and
Flynn 1999). Many of these methods are available in tools like R, however, the standard al-
gorithms need access to all data points at a time and typically iterate over the data multiple
times. This requirement makes these algorithms unsuitable for data streams and led to the
development of data stream clustering algorithms.

Over the last 10 years many algorithms for clustering data streams have been proposed (see
Silva, Faria, Barros, Hruschka, Carvalho, and Gama (2013) for a current survey). Most data
stream clustering algorithms use a two-stage online/offline approach:

1. Online: Summarize the data using a set of k&’ micro-clusters organized in a space effi-
cient data structure which also enables fast look-up. Micro-clusters were intorduced by
Aggarwal, Han, Wang, and Yu (2003) based on the idea of cluster features developed for
BIRCH Zhang, Ramakrishnan, and Livny (1996). Micro-clusters are representatives for
sets of similar data points and are created using a single pass over the data (typically
in real time when the data stream arrives). Micro-clusters are typically represented by
cluster centers and additional statistics such as weight (density) and dispersion (vari-
ance). Each new data point is assigned to its closest (in terms of a similarity function)
micro-cluster. Some algorithms use a grid instead and micro-clusters represent non-
empty grid cells (e.g., Tu and Chen (2009); Wan, Ng, Dang, Yu, and Zhang (2009)). If
a new data point cannot be assigned to an existing micro-cluster, a new micro-cluster
is created. The algorithm might also perform some housekeeping (merging or deleting
micro-clusters) to keep the number of micro-clusters at a manageable size or to remove
information outdated due to a change in the stream’s data generating process.

2. Offline: When the user or the application requires a clustering, the ¥’ micro-clusters are
reclustered into k (k < k') final clusters sometimes referred to as macro-clusters. Since
the offline part is usually not regarded time critical, most researchers use a conventional
clustering algorithm (typically k-means or reachability introduced by DBSCAN (Ester,
Kriegel, Sander, and Xu 1996)) by regarding the micro-cluster centers as pseudo-points.
The algorithms are often modified to take also the weight of micro-clusters into account.

2.2. Classification

Classification, learning a model in order to assign labels to new, unlabeled data points is a well
studied supervised machine learning task. Methods include naive Bayes, k-nearest neighbors,
classification trees, support vector machines, rule-based classifiers and many more (Hastie
et al. 2001). However, as with clustering these algorithms need access to all the training data
several times and thus are not suitable for data streams with constantly arriving new training
data.

Several classification methods suitable for data streams have been developed recently. Exam-
ples are Very Fast Decision Trees (VFDT) (Domingos and Hulten 2000) using Hoeffding trees,
the time window-based Online Information Network (OLIN) (Last 2002) and on-demand
classification (Aggarwal, Han, Wang, and Yu 2004) based on micro-clusters found with the
data-stream clustering algorithm CluStream (Aggarwal et al. 2003). For a detailed descrip-
tion of these and other methods we refer the reader to the survey by Gaber, Zaslavsky, and
Krishnaswamy (2007).

Matthew Bolanos, John Forrest, Michael Hahsler

2.3. Frequent Pattern Mining

The aim of frequent pattern mining is to discover frequently occurring patterns (e.g., itemsets,
subsequences, subtrees, subgraphs) in large data sets. Patterns are then used to summarize
the data set and can provide insights into the data. Although finding all frequent pattern is
a computationally expensive task, many efficient algorithms have been developed for static
data sets. Most notably the APRIORI algorithm (Agrawal, Imielinski, and Swami 1993) for
frequent itemsets. However, these algorithms use breath-first or depth-first search strategies
which results in the need to pass over the data several times and thus makes them unusable for
the streaming case. We refer the interested reader to the survey of frequent pattern mining in
data streams by Jin and Agrawal (2007) which describe several algorithms for mining frequent
itemsets.

2.4. Existing Solution: The MOA Framework

MOA (short for Massive Online Analysis) is a framework implemented in Java for stream
classification, regression and clustering (Bifet, Holmes, Kirkby, and Pfahringer 2010). It
is the first experimental framework to provide easy access to multiple data stream mining
algorithms, as well as tools to generate data streams that can be used to measure and compare
the performance of different algorithms. Like WEKA (Witten and Frank 2005), a popular
collection of machine learning algorithms, MOA is also developed by the University of Waikato
and its interface and workflow are similar to those of WEKA.

The workflow in MOA consists of three main steps:

1. Selection of the data stream model (also called data feeds or data generators).
2. Selection of the learning algorithm.

3. Apply selected evaluation methods on the results of the algorithm on the generated data
stream.

MOA uses a very appealing graphical user interface. As the output MOA generates a report
which contains the results from the data mining task as well as the performance evaluation.
The learning algorithm and the evaluation differs depending in the data mining task (classifi-
cation or clustering). Classification results are shown as text, while clustering results have a
visualization component that shows both the evolution of the clustering (in two dimensions)
and various performance metrics over time.

The MOA framework is an important pioneer in experimenting with data stream algorithms.
MOA’s advantages are that it interfaces with WEKA, provides already a set of data stream
classification and clustering algorithms and it provides a clear Java interface to add new
algorithms or use the existing algorithms in other applications.

3. The stream Framework

A drawback of MOA for R users is that for all but very simple experiments Java code has to
be developed. Also, using MOA’s data stream mining algorithms together with the advanced
capabilities of R to create artificial data and to analyze and visualize the results is currently
very difficult and involves runing code and copying data manually.

6 Introduction to stream

Data Stream Data Data Stream Task
(DSD) —— (DST) —— Result

Figure 1: A high level view of the stream architecture.

The stream framework provides a R-based alternative to the MOA framework. It is based
on several packages including proxy (Meyer and Buchta 2010), MASS (Venables and Ripley
2002), clue (Hornik 2013), clusterGeneration (Qiu and Joe. 2009), and others. The stream
extension package streamMOA also interfaces the data stream clustering algorithms already
available in MOA using the rJava package by Urbanek (2011). Furthermore, other than MOA,
stream can incorporate any algorithm which is written in a language interfaceable by R.

The stream framework consists of two main components:

1. Data Stream Data (DSD) which manages or creates a data stream, and

2. Data Stream Task (DST) which performs a data stream mining task.

Figure 1 shows a high level view of the interaction of the components. We start by creating
a DSD object and a DST object. Then the DST object starts receiving data form the DSD
object. At any time, we can obtain the current results from the DST object. DSTs can
implement any type of data streaming mining task (e.g., classification or clustering). In the
following we will concentrate on clustering since stream currently focuses on this type of task,
but the framework is implemented such that classification, frequent pattern mining or any
other task can be added easily in the future.

stream relies on object-oriented design using the S3 class system (Chambers and Hastie 1992)
to provide for each of the two core components a lightweight interface (i.e., an abstract class)
which can be easily implemented to create new data stream types or data stream mining
algorithms. The detailed design of the DSD and DSC classes will be discussed in the following
subsections.

3.1. Data Stream Data (DSD)

The first step in the stream workflow is to select a data stream implemented as a Data Stream
Data (DSD) object. This object can be a management layer on top of a real data stream, a
wrapper for data stored in memory or on disk, or a generator which simulates a data stream
with know properties for controlled experiments. Figure 2 shows the relationship (inheritance)
hierarchy of the DSD classes as a UML class diagram (Fowler 2003). All DSD classes extend
the base class DSD. There are currently two types of DSD implementations, classes which im-
plement R-based data streams (DSD_R) and MOA-based stream generators (DSD_MOA) provided
in streamMOA. stream currently provides the following generators:

1. Streams with static structure

e DSD_BarsAndGaussians generates two bars and two Gaussians clusters with dif-
ferent density.

Matthew Bolanos, John Forrest, Michael Hahsler 7

e DSD_Gaussians generates static clusters with random Gaussian distribution.

¢ DSD_mlbenchData provides streaming access to machine learning benchmark data
sets found within the mlbench package (Leisch and Dimitriadou 2010).

e DSD_mlbenchGenerator interfaces the generators for artificial data sets defined in
the mlbench package.

e DSD_Target generates a ball in circle data set.

e DSD_UniformNoise generates uniform noise in a d-dimensional (hyper) cube.
2. Streams with concept drift

e DSD_Benchmark, a collection of simple benchmark problems including spliting and
joining clusters, changes in density and size. This collection is indented to grow
into a benchmark set used for algorithm comparison.

e DSD_MG, a generator to specify complex data streams with concept drift. The shape
as well as the behavior of each cluster over time (changes in position, density and
dispersion) can be specified using keyframes (similar to keyframes in animation
and filmmaking) or mathematical functions.

e DSD_RandomRBFGeneratorEvents (streamMOA) generates streams using radial
base functions with noise. Clusters can merge and split.

For reading a saved data stream from a file (in csv format) or to connection to a real stream
using a R connection stream provides:

e DSD_ReadStream is designed to read data from files or open connections.

A non-streaming data set (e.g., stored in a data.frame) can also be wrapped in a stream class
to be replayed as a stream over and over again:

e DSD_Wrapper wraps static data (e.g., a data.frame, a matrix or a fixed portion of another
data stream) as a data stream.

A DSD can also be scaled by wrapping it into an object of class:
e DSD_ScaleStream wraps a DSD and scales it using scale in base.

All DSD implementations share a simple interface consisting of the following two functions:

1. A creator function. This function typically has the same name as the class. By
definition the function name starts with the prefix DSD_. The list of parameters depends
on the type of data stream it creates. The most common input parameters for the
creation of DSD classes are k, number of clusters (i.e., areas with high densities), and d,
number of dimensions. A full list of parameters can be obtained from the help page of
each class. The result of this creator function is not a data set but an object representing
the streams properties and its current state.

2. A data generation function get_points(x, n=1, ...). This function is used to
obtain the next data point (or next n data points) from the stream represented by
object x. The data points are returned as a data.frame with each row representing a
single data point.

8 Introduction to stream

AN 7AN

Implementation Abstract classes

| DSD_Gaussian | | DSD?Wrapperl |DSD7ReadStream| | ce | |DSD7RandomRBF| | e |
| streamMOA -

Figure 2: Overview of the Data Stream Data (DSD) class structure.

Next to these core functions several utility functions like print (), plot () and write_stream()
to save a part of a data stream to disk are provided by stream for class DSD and are available for
all data stream sources. Different data stream implementations might have additional func-
tions implemented. For example, DSD_Wrapper and DSD_ReadStream have reset_stream()
implemented to reset the stream to its beginning.

Following this simple interface, other data stream implementations can be easily added in the
future.

3.2. Data Stream Task (DST)

After choosing a DSD class to use as the data stream source, the next step in the workflow is
to define a Data Stream Task (DST). In stream, a DST refers to any data mining task that
can be applied to data streams. The design is flexible to allow for future extensions and to add
even currently unknown tasks. Figure 3 shows the class hierarchy for DST. It is important to
note that the DST base class is shown merely for conceptual purposes and not directly visible
in the code. The reason is that the actual implementation of clustering (DSC), classification
(DSClassify) or frequent pattern mining (DSFP) are typically quite different and the benefit
of sharing methods would be minimal. We will restrict the following discussion on data stream
clustering (DSC) since stream currently focus on this task and has no implemented algorithms
for the other tasks.

3.3. Data Stream Clustering (DSC)

Data stream clustering algorithms are implemented as subclasses of the DSC class (see Fig-
ure 3). DSCs implement the online process as subclasses of DSC_Micro (since it produces
micro-clusters) and the offline process as subclasses of DSC_Macro.

The following function can be used for objects of subclasses of DSC:

e A creator function which creates an empty clustering. Creator function names by defi-
nition start with the prefix DSC_.

e cluster(dsc, dsd, n=1) which accepts a DSC object and a DSD object. It takes n
data points out of the DSD and adds them to the clustering in the DSC object.

Matthew Bolanos, John Forrest, Michael Hahsler

/\
| | 0
[bsc | [bpsclassiy| [bsrp]| [...] 2
/\ S
— - |E
bSC R |z
% =
¢
| s
| B
S
£
| e
[Dsc pstream| | ... | | bSC_Kmeans | | ... | |psc clustream | ... | _|E
| streamMOA |

Figure 3: Overview of the Data Stream Task (DST) class structure with subclasses for clus-
tering (DSC), classification (DSCClassify) and frequent pattern mining (DSFP).

e nclusters(x) which returns the number of clusters currently in the DSC object. This
is important since the number of clusters in not fixed for most data stream clustering
algorithms.

e get_centers(x, type=c("auto", "micro", "macro"), ...) returns the centers, ei-
ther centroids or medoids, of the clusters of the DSC object. The default value for
type is "auto" and results in DSC_Micro objects to return micro-cluster centers and
DSC_Macro objects to return macro-cluster centers. Most DSC_Macro objects also store
the micro-cluster centers and using type these centers can also be retrieved. Some
DSC_Micro implementations also have a reclustering procedure implemented and type
also allows the user to retrieve macro-clusters. Trying to access centers that are not
available in the clustering results in an error.

e get_weights(x, type=c("auto", "micro", "macro"), ...) returns the weights of
the clusters in the DSC object. How the weight is calculated depends on the clustering
algorithm. Typically it depends on the number of points assigned to each cluster.

e get_assignment(dsc, points, type=c("auto", "micro", "macro"), ...) assigns
each data point in points to its nearest cluster center using Euclidean distance and re-
turns a cluster assignment vector.

e get_copy(x) creates a deep copy of a DSC object. This is necessary since most clus-
terings are represented by data structures in Java (for MOA-based algorithms) or by
R-based reference classes. Calling this function results in an error if a mechanism for
creating a deep copy is not implemented for the used DSC implementation.

10 Introduction to stream

get_centers()

- get_weights()
Data Stream Data Dgzsstgﬁzm evaluate() New data
(DSD) 9 plot() points

(bSc) (data.frame)

\ | / —
\ / get_assignment()

cluster()

get_centers()
get_weights()
Data Stream > evaluate()
Clustering plot()
(DSC_Macro)

. Micro-cluster
\ microToMacro()—P

’// assignments

recluster()

Figure 4: Interaction between the DSD and DSC classes

e plot(x, dsd=NULL, ..., method="pairs", dim=NULL, type = c("auto", "micro",
"macro", "both") (see manual page for more available parameters) plots the centers
of the clusters. There are 3 available plot methods: "pairs", "plot", "pc". Method
"pairs" is the default method that produces a matrix of scatter plots that plots the
attributes against one another (this method is only available when d > 2). Method
"plot" takes the attributes specified in dim (the first two if dim is unspecified) and
plots them as x and y in a scatter plot. Lastly, method "pc" performs Principle Com-
ponent Analysis (PCA) on the data and projects the data to a 2-dimensional plane and
then plots the results. Parameter type controls if micro-, macro-clusters or both are

plotted.

e print(x, ...) prints common attributes of the DSC object. This includes a short
description of the underlying algorithm and the number of clusters that have been
calculated.

Figure 4 shows the typical use of cluster () and other functions. Clustering on a data stream
(DSD) is performed with cluster () on a DSC object. This is typically done with a DSC_micro
object which will perform its online clustering process and the resulting micro-clusters are
available (via get_centers(), etc.) from the object after clustering. Note, that DSC classes
are implemented as R5 reference classes (mutable objects) and thus the result of cluster does
not need to be reassigned to the object. For evaluation, the clusters to which data points
would be assigned can be obtained using get_assignment which results in a vector with
cluster assignments.

Reclustering (the offline component of data stream clustering) is done with recluster (macro,
dsc, type="auto", ...). Herethe centersin dsc are used as pseudo-points by the DSC_macro
object macro. After reclustering the macro-clusters can be inspected (using get_centers(),
etc.) and the assignment of micro-clusters to macro-clusters is available via microToMacro ().

The implementations for DSC are split into R-based (DSC_R) and MOA-based implementations

(DSC_MOA from package streamMOA). (compare Figure 3). The following clustering algorithms
are currently available:

Matthew Bolanos, John Forrest, Michael Hahsler 11

e DSC_CluStream (streamMOA) implements the CluStream algorithm by Aggarwal et al.
(2003). The algorithm creates a fixed number of micro-clusters and applies weighted
k-means on the micro-clusters for reclustering.

e DSC_ClusTree (streamMOA) implements the ClusTree algorithm by Kranen, Assent,
Baldauf, and Seidl (2009). The algorithm organizes the micro-clusters in a tree structure
for faster access. Wither k-means or reachability from DBSCAN is used for reclustering.

e DSC_DenStream (streamMOA) is the DenStream algorithm by Cao, Ester, Qian, and
Zhou (2006). DenStream is density-based and, organizes micro-clusters based on their

weight as potential and outlier micro-clusters. Micro-clusters are reclustered using
reachability from DBSCAN.

e DSC_DStream implements the D-Stream algorithm by Tu and Chen (2009). D-Stream
uses a grid to estimate density in grid cells. For reclustering adjacent dense cells are
merged to form macro-clusters.

e DSC_Sample selects representatives via Reservoir Sampling (Vitter 1985).

e DSC_tNN implements the simple data stream clustering algorithm called threshold nearest-
neighbors (?Hahsler and Dunham 2010). Micro-clusters have a fixed radius. For reclus-
tering reachability from DBSCAN is used. method.

Although the authors of most data stream clustering algorithms suggest a reclustering method,
in stream and method can be applied. For reclustering, the following clustering algorithms
are currently available as objects of class DSC_Macro:

e DSC_DBSCAN implements DBSCAN by Ester et al. (1996).
e DSC_Hierarchical interfaces R’s hclust function.

e DSC_Kmeans interface R’s k-means implementation or a version of k-means where the
data points (micro-clusters) are weighted by the micro-cluster weights, i.e., a micro-
cluster representing more data points has more weight.

e DSC_Reachability uses DBSCAN’s concept of reachability for micro-clusters. Two
micro-clusters are directly reachable if they are closer than a distance € from each other
(they are within each other’s e-neighborhood). Two micro-clusters are reachable if
they are connected by a chain of directly reachable micro-clusters. This is related to
hierarchical clustering with single linkage.

Finally, clustering sometimes creates small clusters for noise or outliers in the data. stream
provides prune_clusters(dsc, threshold=.05, weight=TRUE) to remove a given percent-
age (given by threshold) of the clusters with the least weight. The percentage is either
computed with the number of clusters or with the sum of the weight of all clusters (weight).
The resulting clustering is a static copy (DSC_Static). Further clustering cannot be per-
formed by it, but it can be used as input for reclustering.

4. Evaluating Data Stream Clustering

12 Introduction to stream

Evaluation of data stream mining is an important issue. We will briefly introduce the evalu-
ation of data stream clustering here and refer the interested reader to the books by Aggarwal
(2007) and Gama (2010).

Evaluation of clustering and in particular data stream clustering is discussed in the literature
extensively and there are many evaluation criteria available. For the evaluation of conventional
clustering we refer the reader to the popular books by Jain and Dubes (1988) and Kaufman
and Rousseeuw (1990). Evaluation of data stream clustering is treated in the book by Gama
(2010).

Evaluation of data stream clustering is performed in stream via

evaluate(dsc, dsd, method, n = 1000, type=c("auto", "micro", "macro"),
assign="micro"), ...,

where n data points are taken from dsd and assigned to their closest cluster in the clustering
in dsc using Euclidean distance. By default the points are assigned to micro-clusters, but
it is also possible to assign them to macro-cluster centers instead (assign="macro"). Then
initial assignments are aggregated to the level specified in type. For example, for a macro-
clustering, the initial assignments will be made by default to micro-clusters and then these
assignments will be translated into macro-cluster assignments using the micro- to macro-
cluster relationships stored in the clustering. Then the evaluation measure specified in method
is calculated.

A simple measure is to evaluate the compactness of the data points assigned to each cluster
using the sum of squared distances between each data point and the center of its cluster
(method "SSQ"). This is a measure of internal cluster validity which does not require any
information about the ground truth (i.e., true partitioning of the data into classes).

Most evaluation measures perform external evaluation and require the ground truth (analog
to the class label in classification) for the data (dsd). Then based on cluster membership of
each new data point and the class label different measures can be computed. We will not
describe each measure here since most of them are standard measures which can be found in
many text books (e.g., Jain and Dubes 1988; Kaufman and Rousseeuw 1990). We only list
the measures currently available for evaluate () (method name are under quotation marks):

e "precision", "recall", F1 measure ("F1"),

e "purity", false positive rate ("fpr")

e Rand index ("Rand"), adjusted Rand index ("cRand"),

e Jaccard index ("Jaccard"),

e Euclidean dissimilarity of the memberships ("Euclidean")

e Manhattan dissimilarity of the memberships ("Manhattan"),
e Normalized Mutual Information ("NMI")

e Katz-Powell index ("KP")

e Fowlkes and Mallows’s index ("FM")

Matthew Bolanos, John Forrest, Michael Hahsler

e Maximal cosine of the angle between the agreements ("angle"),
e Maximal co-classification rate ("diag"),

e Prediction Strength ("PS").

evaluate () evaluates the clustering at a certain point in time using explicitly specified test
data. However, many data streams exhibit concept drift and evolve over time and it is
important to evaluate how well the clustering algorithm is able to adapt to the changing
cluster structure. Aggarwal et al. (2003) developed an evaluation scheme which was used later
on by others (e.g., by Tu and Chen (2009) and Wan et al. (2009)). In this approach a horizon
is defined as a number of data points which are first clustered and then the evaluation measure
is calculated using the same data. Algorithms which can better adapt to the changing stream
will achieve a better value. This evaluation strategy is implemented in stream as function
evaluate_cluster (). It shares most parameters with evaluate() and can apply the same
set of evaluation measures.

5. Examples

Providing a framework for rapid prototyping new data stream mining algorithms and com-
paring them experimentally is the main purpose of stream. In this section we give several
increasingly complex examples of how to use stream. First, we start with creating a data
stream using different implementations of the DSD class. The second example shows how to
save and read stream data to and from disk. We then give examples in how to reuse the same
data from a stream in order to perform comparison experiments with multiple data stream
mining algorithms on exactly the same data. Finally, the last example introduces the use of
data stream clustering algorithms with a detailed comparison of two algorithms from start
to finish by first running the online components, then using a weighted k-means algorithm to
re-cluster the micro-clusters generated by each algorithm into final clusters.

5.1. Creating a data stream

In this example, we focus on the DSD class to model data streams.

> library("stream")
> dsd <- DSD_Gaussians (k=3, d=3, noise=0.05)
> dsd

Static Mixture of Gaussians Data Stream (DSD_Gaussians, DSD_R, DSD)
With 3 clusters in 3 dimensions

After loading the stream package (and setting a seed for the random number generator to
make the experiments reproducible), we call the creator function for the class DSD_Gaussians
specifying the number of clusters as £ = 4 and the data dimensionality to d = 2 with an
added noise of 5% of the data points. This data stream generator chooses for each cluster
randomly a mean and a covariance matrix.

13

14 Introduction to stream

New data points are requested from the stream using get_points(x, n=1, ...). When a
new data point is requested from this generator, a cluster is chosen randomly and then a point
is drawn from a multivariate normal distribution given by the mean and covariance matrix of
the cluster. The following instruction requests n = 5 new data points.

> p <- get_points(dsd, n=5)
>p

Vi V2 V3
1 0.6780328 0.5242068 0.5605932
2 0.4120231 0.6052871 0.6360699
3 0.2985138 0.2289293 0.3652078
4 0.7063846 0.4860862 0.4457926
5 0.4405654 0.4725780 0.5969839

The result is a data.frame containing the data points as rows. For evaluation it is often
important to know the ground truth, in this case from which cluster each point was created.
The generator also returns the ground truth if it is called with assignment=TRUE. The ground
truth is returned as an attribute with the name "assignment" and can easily be accessed in
the following way:

> p <- get_points(dsd, n=100, assignment=TRUE)
> attr(p, "assignment")

(1] 2 2 2 2 2 2N 2 3 2 3 2 3 3 113 2 3 3 21 2 3
[26] 3 2 1 3 1 2NA 3 2 1 1 2 3 3 2 1 2 2N 1 2 3 3 1
[64] 1 1+ 2 2 3 3 2 2 1 2 2 1 3 2N 3 1 3 3 3 1 3 3 1
[r6] 3 3 3 1 2 1 3 311 23131113 231312

Note that we created a generator with 5% noise. Noise points do not belong to any cluster
and thus have an assignment value of NA.

Next, we plot 500 points from the data stream to get an idea about its structure.
> plot(dsd, n=500)

The data can also be projected on its first two principal components
> plot(dsd, n=500, method="pc")

Figures 5 and 6 show the resulting plots. The assignment value is automatically used for color
in the plot and noise points are plotted as gray crosses.

Stream also supports data streams which contain concept drift. Example for such a data
stream generators are collected in DSD_Benchmark where clusters move over time.

> dsd <- DSD_Benchmark(1)
> dsd

W N = W

00 02 04 06 08 10

Matthew Bolanos, John Forrest, Michael Hahsler

0.0 02 04 06 08 10

0.4

V3

T T T T T T T T
02 04 06 08 00 02 04 06 08

Figure 5: Plotting 500 data points from the data stream

1.0

0.8

0.6

0.2

0.0

1.0

00 02 04 06 08

15

16 Introduction to stream

0.6

0.4

PC2
0.2

0.0

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

PC1

Figure 6: Plotting 500 data points from the data stream projected on its first two principal
components

Moving Data Generator (DSD_MG, DSD_R, DSD)
With 3 clusters in 2 dimensions. Time is 1

k and d represent the number of clusters and the dimensionality of the data, respectively. To
show concept drift, we request four times 200 data points from the stream and plot them. To
fast-forward in the stream we request 1300 points in between the plots.

plot(dsd, 200, xlim=c(0,1), ylim=c(0,1))
tmp <- get_points(dsd, n=1300)
plot(dsd, 200, xlim=c(0,1), ylim=c(0,1))
tmp <- get_points(dsd, n=1300)
plot(dsd, 200, xlim=c(0,1), ylim=c(0,1))
tmp <- get_points(dsd, n=1300)
plot(dsd, 200, xlim=c(0,1), ylim=c(0,1))

V V V VvV Vv Vv Vv

Figure 7 shows the four plots where clusters move over time. An animation of the data can
also be generated using animate_data().

> reset_stream(dsd)
> animate_data(dsd, n=10000, pointInterval=100, xlim=c(0,1), ylim=c(0,1))

The animation is recorded using package animation Xie (2013) and can be replayed and using
ani.replay(), and saved as an animation embedded in a HTML document or an animated
gif. More formats for saving the animation are available in animation.

> library(animation)
> animation::ani.options(interval=.1)

X2

X2

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Matthew Bolanos, John Forrest, Michael Hahsler

0.0 0.2 0.4 0.6 0.8 1.0
X1
(a) Position 1
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X1

(c) Position 3000

X2

X2

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

| w®
L
0.0 0.2 0.4 0.6 0.8 1.0
X1
(b) Position 1500
I &
i »
0.0 0.2 0.4 0.6 0.8 1.0

X1

(d) Position 4500

Figure 7: Data points from DSD_RandomRBFGeneratorEvents at different positions in the
stream. Note that clusters change position over time.

17

18 Introduction to stream

> ani.replay()
> saveHTML (ani.replay())
> saveGIF(ani.replay())

To see a life animation, we refer the reader to the example code in the manual page for
animate_data.

5.2. Reading and writing data streams

Although data streams by definition are unbounded and thus storing the complete stream is
infeasible, it is often useful to store parts of a stream to disk. For example, a small part of
a stream with an interesting feature can be used to test how a new algorithm handles this
specific case. stream has support for reading and writing parts of data streams through an R
connection which provide a set of functions to interface file-like objects like files, compressed
files, pipes, URLs or sockets (R Foundation 2011).

We start by creating a DSD object.

> dsd <- DSD_Gaussians(k=3, d=5)
> dsd

Static Mixture of Gaussians Data Stream (DSD_Gaussians, DSD_R, DSD)
With 3 clusters in 5 dimensions

Next, we write 100 data points to disk using write_stream().
> write_stream(dsd, "data.csv", n=100, sep=",")

write_stream() accepts a DSD object, and then either a connection directly, or the file
name. The instruction above will create a new file called dsd_data.cvs (an existing file will
be overwritten). The sep parameter defines how the dimensions in each data point (row) are
separated. Here "," is used to create a comma separated values file. The actual writing is
done by the write.table() function and any additional parameters are passed directly to it.
Data points are requested individually from the stream and then written to the connection.
This way the only restriction for the size of the written stream are limitations (e.g., the
available storage) at the receiving end.

The DSD_ReadStream object is used to read a stream from a connection or a file. It reads
a single data point at a time with the read.table() function. Since, after the read data is
processed, e.g., by a data stream clustering algorithm, it it removed from memory, we can
efficiently process files larger than the available main memory in a streaming fashion. In
the following example we read a data stream that is stored as a compressed csv-file in the
package’s examples directory.

> file <- system.file("examples", "kddcupl10000.data.gz", package="stream")

> dsd_file <- DSD_ReadStream(gzfile(file),take=c(1, 5, 6, 8:11, 13:20, 23:41),
+ assignment=42, k=7)

> dsd_file

Matthew Bolanos, John Forrest, Michael Hahsler

File Data Stream (DSD_ReadStream, DSD_R, DSD)
With 7 clusters in 34 dimensions

Using take and assignment we define which columns should be used as data and which
column contains the ground truth assignment. We also specify the true number of clusters k.
Ground truth and number of clusters do not need to be specified if they are not available or
no evaluation with external measures is planned.

DSD_ReadStream objects are just like any other DSD object in that you can call get_points()
to retrieve data points from the data stream.

> get_points(dsd_file,5)

Vi V56 V6 V8 V9 V10 V11 Vi3 V14 V15 V16 V17 V18 V19 V20 V23 V24 V25 V26

1 021545076 0 0 0 O O O O O O O O O 1 1 0O O
2 0162 4528 0 0 0 O O O O O O O O O 2 2 0 o
3 0236 1228 0 0 O O O O O O O O O o©O 1 1 0 O
4 02383 2032 0 0O 0 0o O O O O O o o o 2 2 0 o
5 0239 486 0 O O O o0 o0 o o o o o o 3 3 o0 o

V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39 V40 V41

i o0 o0 1 o0 O o o o0 0000 O O O O o
2 0 o0 1 0 O 1 1 i 01.00 0 O O O O
3 0o 0 1 o0 O 2 2 1 0050 O O O O O
4 0 o0 1 o0 o0 3 3 1 0038 O O O O O
5 o0 o0 1 o0 O 4 4 1 00.25 O O O O O

Looping over the data several times and resetting the position in the DSD_ReadStream to the
file’s beginning is possible with reset_stream() and will described in the next example.

5.3. Replaying a data stream

An important feature of stream is the ability to replay portions of a data stream. With
this feature we can capture a special feature of the data (e.g., an anomaly) and then adapt
our algorithm and test if the change improved the behavior on exactly that data. Also, this
feature can be used to conduct experiments where different algorithms need to be compared
using exactly the same data.

There are several ways to replay streams. We can write a portion of a stream to disk with
write_stream() and then use DSD_ReadStream to read the stream portion back every time it
is needed. However, often the interesting portion of the stream is small enough to fit into main
memory or might be already available as a matrix or a data.frame in R. In this case we can
use the DSD class DSD_Wrapper which provides a stream interface for a matrix/data.frame.

First we create some data and use get_points() to store 100 points as a data.frame in
points.

> dsd <- DSD_Gaussians (k=3, d=2)
> p <- get_points(dsd, 100)
> head(p)

20 Introduction to stream

Vi V2
.7497399 0.4127833
.4564119 0.1287219
.1190636 0.1263880
.6875141 0.5917221
.3401115 0.3384190
.6331463 0.4436735

o Ok W N
O O O O O o

Next, we create a DSD_Wrapper object which provides a data stream wrapper for points.

> replayer <- DSD_Wrapper (p, k=3)
> replayer

Data Frame/Matrix Stream Wrapper (DSD_Wrapper, DSD_R, DSD)
With 3 clusters in 2 dimensions
Contains 100 data points - currently at position 1 - loop is FALSE

Every time we get a point from replayer, the stream moves to the next position (row) in the
data.frame.

> get_points(replayer, n=5)

Vi V2
0.7497399 0.4127833
0.4564119 0.1287219
0.1190636 0.1263880
0.6875141 0.5917221
0.3401115 0.3384190

g s WwN -

> replayer

Data Frame/Matrix Stream Wrapper (DSD_Wrapper, DSD_R, DSD)
With 3 clusters in 2 dimensions
Contains 100 data points - currently at position 6 - loop is FALSE

Note that the stream is now at position 6. The stream only has 94 points left and the following
request for more than the available data points will result in an error.

> get_points (replayer, n = 1000)

Error in get_points.DSD_Wrapper(replayer, n = 1000)
Not enought data points left in stream!

DSD_Wrapper and DSD_ReadStream can be created to loop indefinitely, i.e., start over once
the last data point is reached. This is achieved by passing 1oop=TRUE to the creator function.
The current position in the stream for those two types of DSD classes can also be reset to the
beginning of the stream via reset_stream().

Matthew Bolanos, John Forrest, Michael Hahsler

> reset_stream(replayer)
> replayer

Data Frame/Matrix Stream Wrapper (DSD_Wrapper, DSD_R, DSD)
With 3 clusters in 2 dimensions
Contains 100 data points - currently at position 1 - loop is FALSE

5.4. Clustering a data stream

In this example we show how to cluster data using DSC objects. First, we create a data
stream (two Gaussian clusters in two dimensions with 5% noise).

> dsd <- DSD_Gaussians (k=3, d=2, noise=0.05)
> dsd

Static Mixture of Gaussians Data Stream (DSD_Gaussians, DSD_R, DSD)
With 3 clusters in 2 dimensions

Next, we prepare the clustering algorithm. We use here DSC_DStream and set the gridsize to
0.1.

> dstream <- DSC_DStream(gridsize=0.1)
> dstream

DStream (DSC_DStream, DSC_Micro, DSC_R, DSC)
Number of micro-clusters: O
Number of macro-clusters: O

Now we are ready to cluster data from the stream using the cluster () function. Note, that
cluster () will implicitly alter the mutable dsc object so no reassignment is necessary.

> cluster(dstream, dsd, 500)
> dstream

DStream (DSC_DStream, DSC_Micro, DSC_R, DSC)
Number of micro-clusters: 11
Number of macro-clusters: 3

After clustering 500 data points, the clustering contains 11 micro-clusters. Note that our
implementation of DStream has reclustering built in and therefore also shows macro-clusters.
The micro-cluster centers are:

> head(get_centers(dstream))

21

22 Introduction to stream

1.0
|

0.8

0.6

(O

(D

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

V1

Figure 8: Plotting the micro-clusters produced by DenStream together with the original data
points.

vi V2
1 0.25 0.15
2 0.25 0.25
3 0.35 0.25
4 0.35 0.55
5 0.35 0.65
6 0.45 0.55

It is often helpful to visualize the results of the clustering operation during the comparison
of algorithms.

> plot(dstream, dsd)

The resulting plot is shown in Figure 8. The micro-clusters are plotted in red on top of grey
data points. The size of the micro-clusters indicates the weight, i.e., the number of data
points represented by the micro-cluster. We see that DenStream places the micro-clusters in
dense areas and ignores most of the noise.

5.5. Evaluating results

In this example we will show how to display evaluation measures after clustering data using
a DSC object with the evaluate() function. The function takes a DSC object containing a
clustering and a DSD with evaluation data to compute several quality measures for clustering.
Here we use the data stream and the DenStream clustering objects created in the previous
section.

> evaluate(dstream, dsd, n = 500)

Matthew Bolanos, John Forrest, Michael Hahsler

Evaluation results for micro-clusters.
Points were assigned to micro-clusters.

23

numMicroClusters numMacroClusters numClasses precision
11.0000000 3.0000000 3.0000000 0.9547414
recall F1 purity fpr
0.2592159 0.4077312 0.9547414 0.2592159
SSQ Euclidean Manhattan Rand
28.2606866 0.2107948 0.3771552 0.7558185
cRand NMI KP angle
0.3310043 0.6240380 0.4372053 0.3771552
diag FM Jaccard PS
0.3771552 0.5159371 0.2751016 0.2123002
classPurity
0.2592159

The number of points taken from dsd and used for the evaluation are passed on as the
parameter n. Individual measures can be calculated using the method argument.

> evaluate(dstream, dsd, method = c("purity", "crand"), n = 500)

Evaluation results for micro-clusters.
Points were assigned to micro-clusters.

purity cRand
0.9600000 0.3440005

Purity of the micro-clusters is high since each only covers points from the same true cluster,
however, corrected Rand is low because several micro-clusters split the points from each true
cluster.

To evaluate how well a clustering algorithm can adapt to an evolving data stream, we use
evaluate_cluster (). Following the evaluation scheme developed by Aggarwal et al. (2003)
we define an evaluation horizon as a number of data points which are first clustered and then
the evaluation measure is calculated using the same data. The following examples evaluate
DenStream on an evolving stream created with DSD_RandomRBFGeneratorEvents. We use a
fixed seed to make the experiment repeatable.

> dsd <- DSD_Benchmark(1)

> micro <- DSC_DStream(gridsize=.05, lambda=.01)

> ev <- evaluate_cluster(micro, dsd, method=c("numMicroClusters", "purity"),
+ n=5000, horizon=100)

> head(ev)

points numMicroClusters purity
[1,] 100 13 0.99
[2,] 200 9 0.98

24 Introduction to stream

o
-
[ee)
- | W
2 o
S5 o 7
o
o = |
z o
N
g
o |
° T T T T T T
0 1000 2000 3000 4000 5000

Points

Figure 9: Micro-cluster purity over an evolving stream

[3,] 300 10 0.93
(4,] 400 8 0.92
[5,] 500 8 0.92
(6,1] 600 12 0.93

> plot(ev[, "points"], ev[,"purity"], type="1",
+ ylim=c(0,1), ylab="Avg. Purity", xlab="Points")

Figure 9 shows the development of the average micro-cluster purity (each micro-cluster only
represents points of a single group in the ground truth) over 5000 data points in the data
stream. Purity drops before point 3000 significantly, because the because the two clusters
overlap for a short period of time.

To analyze the clustering process, we can visualize the clustering using animate_cluster ().
To recreate the previous experiment, we use the same random number seed and initialize the
DSD and DSC objects in the same way.

> reset_stream(dsd)

> micro <- DSC_DStream(gridsize=.05, lambda=.01)

> r <- animate_cluster(micro, dsd, evaluationMethod="purity", n=5000,
+ horizon=100, pointInterval=100,

+ x1im=c(0,1), ylim=c(0,1))

Figure 10 shows the result of the clustering animation with purity evaluation. The whole
animation can be recreated by executing the code above. The animation can be again replayed
and saved using the package animation.

> library(animation)

> animation::ani.options(interval=.1)
> ani.replay()

> saveHTML (ani.replay())

5.6. Reclustering DSC objects with another DSC

Matthew Bolanos, John Forrest, Michael Hahsler

o
S
2 §8
o
© |
o
AN
X
< |
o
N
S P
o |
© I I I I I I
00 02 04 06 08 1.0
X1
2 ©
5 o
o |
o]
o I I I I I I
0 1000 3000 5000

Figure 10: Animated clustering with evaluation.

25

26 Introduction to stream

1.0
1.0
1

0.8

0.8

V2
V2

:
gt
P

0.4

0.2

0.0
0.0

Figure 11: A data stream clustered with D-Stream and then reclustered with weighted k-
means and k = 3. (a) shows macro-clusters and (b) shows both, micro and macro-clusters.

This examples show how to recluster a DSC object after creating it. To begin, first create a
DSC object and run the clustering algorithm.

> dsd <- DSD_Gaussians(k=3, d=2, noise=0.05)
> dstream <- DSC_DStream(gridsize=.1)

> cluster(dstream, dsd, 1000)

> dstream

DStream (DSC_DStream, DSC_Micro, DSC_R, DSC)
Number of micro-clusters: 14
Number of macro-clusters: 2

Although the data contains three clusters, the built in reclustering of D-Stream (joining
adjacent dense grids) only produces two macro-clusters. The produced micro-clusters can
be reclustered by the recluster() method with any avaialble macro-clustering algorithm.
Some supported macro-clustering models that are typically used for reclustering are k-means,
hierarchical clustering, and reachability. Here we use weighted k-means.

> km <- DSC_Kmeans (k=3, weighted=TRUE)
> recluster (km, dstream)
> km

weighted k-Means (DSC_Kmeans, DSC_Macro, DSC_R, DSC)
Number of micro-clusters: 14
Number of macro-clusters: 3

> plot(km, dsd)

Matthew Bolanos, John Forrest, Michael Hahsler 27

The resulting plot is shown in Figure 11(a). Since DSC_Kmeans is a macro-clustering algorithm,
the plot contains macro-clusters shown as large blue crosses. The large blue crosses. Micro
and macro-clusters can be shown using type="both" (see Figure reffigure:recluster(b)).

> plot(km, dsd, type="both")

Evaluation on a macro-clustering model automatically uses the macro-clusters. For evalua-
tion, n new data points are requested from the data stream and each is assigned to its nearest
micro-cluster. The assignment is evaluated using the ground truth provided by the data
stream generator.

> evaluate(km, dsd, method=c("purity", "crand", "SSQ"), n=500)

Evaluation results for macro-clusters.
Points were assigned to micro-clusters.

purity cRand S8Q
0.9531915 0.8695939 46.6188222

Alternatively, the new data points can also be assigned to the closest macro-cluster.

> evaluate(km, dsd, c(method="purity", "crand", "SSQ"), n=500, assign="macro")

Evaluation results for macro-clusters.
Points were assigned to macro-clusters.

purity cRand SsQ
0.9666667 0.9056792 47.9831782

In this case the evaluation measures purity and corrected Rand sightly increase, since the there
are two micro-clusters covering the area between the top two true clusters (see Figure 11(b)).
These micro-clusters assigned all its points to one of the two clusterds. Assigning the points
rather to the macro-cluster centers splits these points better and therefore decreases the
number of incorrectly assigned points. The average within sum of square increases slightly
since the number of macro-clusters is smaller than the number of micro-clusters.

The stream framework allows us to easily create many experiments by using different data
and by matching different clustering and reclustering algorithms. One example of such a
study can be found in Bolanos, Forrest, and Hahsler (2014).

6. Extending the stream Framework

Since stream mining is a relatively young field and many advances are expected in the near
future, the object oriented framework in stream is developed with easy extensibility in mind.
Implementations for data streams (DSD) and data stream tasks (DST) can be easily added
by implementing a small number of core functions. The actual implementation can be written

28 Introduction to stream

in either R, Java, C/C++ or any other programming language which can be interfaced by R.
In the following we discuss how to extend DSD and DST.

6.1. Implementing new Data Stream Data (DSD) Classes

The class hierarchy in Figure 2 (on page 8) is implemented in the S3 class system by using a
vector of class names for the class attribute. For example, an object of class DSD_Gaussians
will have the class attribute vector c("DSD_Gaussians", "DSD_R", "DSD") indicating that
the object also is an R implementation of DSD. This allows the framework to implement all
common functionality as functions at the level of DSD and DSD_R and only a minimal set of
functions is required to implement a new data stream source.

For a new DSD implementation only a creator function and a get_points() method for the
class needs to be implemented. The creator function creates an object of the appropriate DSD
subclass. Typically this S3 object is a list of all parameters, an open R connection and/or an
environment (or a reference class) for storing state information (e.g., the current position in
the stream). Also an element called "description" should be provided. This element is used
by print (). Note that the class attribute has to contain a vector of all parent classes in the
class diagram in bottom-up order. The implemented get_points () needs to dispatch for the
class and create as the output a data.frame containing the data points as rows. Also, if the
ground truth (true cluster assignment) for the data is available, then this can be attached to
the data.frame as an attribute called "assignment" as an integer vector (noise is represented
by NA).

For a simple example, we show here the implementation of of DSD_UniformNoise.

> DSD_UniformNoise <- function(d=2)

+ structure(list(description = "Uniform Noise Data Stream", d = d),

+ class=c("DSD_UniformNoise", "DSD_R","DSD"))

> get_points.DSD_UniformNoise <- function(x, n=1, assignment = FALSE, ...) {
+ data <- as.data.frame(t(replicate(n, runif(x$d))))

+ if (assignment) attr(data, "assignment") <- rep(NA, n)

+ data

+ }

The constructor only stores the description and the dimensionality of the data. Since all data
is random, there is no need to store a state. The get_points() implementation creates n
random points and if assignments are needed attaches a vector with the appropriate number
of NAs.

6.2. Implementing new Data Stream Task (DST) Classes

We concentrate again on data stream clustering. However, to add new data stream mining
tasks, a subclass hierarchy similar to the hierarchy in Figure 3 (on page 9) for data stream
clustering (DSC) can be easily added.

To implement a new clustering algorithm, a creator function (typically named after the al-
gorithm) and a cluster() function is needed. The clustering algorithm itself is part of the
object created by the creator. To understand this slightly complicated approach consider
again Figure 4 (on page 10). The framework provides the function cluster(dsc, dsd, n=1)

Matthew Bolanos, John Forrest, Michael Hahsler 29

which contains a loop to go through n new data points. In the loop a block of data points
is obtained from dsd using its get_point () function and then the data points are passed on
to an internal generic clustering function which has implementations for DSC_MOA and DSC_R.
The implementation for DSC_MOA takes care of all MOA-based clustering algorithms. For R-
based implementation, the DSC_R version looks in the list of the dsc object for an element
called "RObj", which needs to be a reference class object. Reference classes have been re-
cently introduced with R-2.12 in core package methods as a construct for mutable objects.
Mutability means that the object can be changed without creating a copy and assigning it
back to itself as would be necessary in a purely functional programming language. The RObj
in DSC is expected to be a reference class with a cluster method. Note at this point that
methods of reference classes are called in a very different way from normal R function calls.
For example, the cluster method of Robj is invoked by RObj$cluster (). However, this is not
important for the end user since the cluster method is only used internally and never called
directly by the user.

To obtain the clustering result, a methods called get_microclusters and get_microweights
which dispatched for the new class need to be implemented. These methods extract the
centers/weights of the clusters from the reference class object in dsc and return them as a
data.frame (centers) or a vector (weights). These methods are also not exposed to the user
and are called internally from get_centers and get_weights.

For a macro-clustering algorithm, the cluster method performs reclustering and get_macroclusters
and get_macroweights need to be implemented. In addition microToMacro, a method which
does micro- to macro-cluster matching, has to be provided.

For a complete example of a clustering algorithm implemented in R, look at DSC_DStream (in
file DSC_DStream.R) in the package’s R directory.

7. Conclusion and Future Work

stream is a data stream modeling framework in R that has both a variety of data stream
generation tools as well as a component for performing data stream mining tasks. The flex-
ibility offered by our framework allows the user to create a multitude of easily reproducible
experiments to compare the performance of these tasks.

Furthermore, the presented infrastructure can be easily extended by adding new data sources
and algorithms. We have abstracted each component to only require a small set of functions
that are defined in each base class. Writing the framework in R means that developers have
the ability to design components either directly in R, or design components in Java, Python or
C/C++, and then write a small R wrapper as we did for some MOA algorithms in streamMOA.
This allows experimenting with a multitude of algorithms in a consistent way.

Currently, stream focuses on the data stream clustering task. In the future we plan to also
incorporate classification and frequent pattern mining algorithms as an extension of the base
DST class.

Acknowledgments

This work is supported in part by the U.S. National Science Foundation as a research ex-
perience for undergraduates (REU) under contract number 11S-0948893 and by the National

30 Introduction to stream

Human Genome Research Institute under contract number R21HG005912.

References

Aggarwal C (ed.) (2007). Data Streams — Models and Algorithms. Springer.

Aggarwal CC, Han J, Wang J, Yu PS (2003). “A Framework for Clustering Evolving Data
Streams.” In Proceedings of the International Conference on Very Large Data Bases (VLDB
'03), pp. 81-92.

Aggarwal CC, Han J, Wang J, Yu PS (2004). “On Demand Classification of Data Streams.” In
Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining, KDD 04, pp. 503-508. ACM, New York, NY, USA.

Agrawal R, Imielinski T, Swami A (1993). “Mining Association Rules between Sets of Items
in Large Databases.” In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 207-216. Washington D.C.

Apache Incubator (2014). Storm: Distributed and Fault-tolerant Realtime Computation. URL
http://storm.incubator.apache.org/.

Babcock B, Babu S, Datar M, Motwani R, Widom J (2002). “Models and Issues in Data
Stream Systems.” In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, PODS ’02, pp. 1-16. ACM, New York, NY,
USA.

Bar R (2014). factas: Data Mining Methods for Data Streams. R package version 2.3, URL
http://CRAN.R-project.org/package=factas.

Barbera P (2014). streamR: Access to Twitter Streaming API via R. R package version 0.2.1,
URL http://CRAN.R-project.org/package=streanR.

Bifet A, Holmes G, Kirkby R, Pfahringer B (2010). “MOA: Massive Online Analysis.” Journal
of Machine Learning Research, 99, 1601-1604. ISSN 1532-4435.

Bolanios M, Forrest J, Hahsler M (2014). “Clustering Large Datasets using Data Stream Clus-
tering Techniques.” In M Spiliopoulou, L Schmidt-Thieme, R Janning (eds.), Data Analysis,
Machine Learning and Knowledge Discovery, Studies in Classification, Data Analysis, and
Knowledge Organization, pp. 135-143. Springer-Verlag.

Cao F, Ester M, Qian W, Zhou A (2006). “Density-Based Clustering over an Evolving Data
Stream with Noise.” In Proceedings of the 2006 SIAM International Conference on Data
Mining, pp. 328-339. STAM.

Chambers JM, Hastie TJ (1992). Statistical Models in S. Chapman & Hall. ISBN
9780412830402.

Charest L, Harrington J, Salibian-Barrera M (2012). birch: Dealing With Very Large Datasets
Using BIRCH. R package version 1.2-3, URL http://CRAN.R-project.org/package=
birch.

http://storm.incubator.apache.org/
http://CRAN.R-project.org/package=factas
http://CRAN.R-project.org/package=streamR
http://CRAN.R-project.org/package=birch
http://CRAN.R-project.org/package=birch

Matthew Bolanos, John Forrest, Michael Hahsler 31

Domingos P, Hulten G (2000). “Mining High-speed Data Streams.” In Proceedings of the sizth
ACM SIGKDD international conference on Knowledge discovery and data mining, KDD
00, pp- 71-80. ACM, New York, NY, USA.

Ester M, Kriegel HP, Sander J, Xu X (1996). “A Density-based Algorithm for Discovering
Clusters in Large Spatial Databases With Noise.” In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’1996), pp. 226—
231.

Fowler M (2003). UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage. 3 edition. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. ISBN
0321193687.

Gaber M, Zaslavsky A, Krishnaswamy S (2007). “A Survey of Classification Methods in Data
Streams.” In C Aggarwal (ed.), Data Streams — Models and Algorithms. Springer.

Gaber MM, Zaslavsky A, Krishnaswamy S (2005). “Mining Data Streams: A Review.” SIG-
MOD Rec., 34, 18-26.

Gama J (2010). Knowledge Discovery from Data Streams. 1st edition. Chapman & Hall/CRC,
Boca Raton, FL. ISBN 1439826110, 9781439826119.

Gentry J (2013). twitteR: R Based Twitter Client. R package version 1.1.7, URL http:
//CRAN.R-project.org/package=twitteR.

Hahsler M, Dunham MH (2010). “rEMM: Extensible Markov Model for Data Stream Clus-
tering in R.” Journal of Statistical Software, 35(5), 1-31. URL http://wuw.jstatsoft.
org/v35/i05/.

Hahsler M, Dunham MH (2014). rEMM: Extensible Markov Model for Data Stream Clustering
in R. R package version 1.0-9., URL http://CRAN.R-project.org/.

Hastie T, Tibshirani R, Friedman J (2001). The Elements of Statistical Learning (Data
Mining, Inference and Prediction). Springer Verlag.

Hornik K (2013). clue: Cluster Ensembles. R package version 0.3-47., URL http://CRAN.
R-project.org/package=clue.

Jain AK, Dubes RC (1988). Algorithms for Clustering Data. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA. ISBN 0-13-022278-X.

Jain AK, Murty MN, Flynn PJ (1999). “Data Clustering: A Review.” ACM Compututer
Surveys, 31(3), 264-323.

Jin R, Agrawal G (2007). “Frequent Pattern Mining in Data Streams.” In C Aggarwal (ed.),
Data Streams — Models and Algorithms. Springer.

Kaptein M (2013). RStorm: Simulate and Develop Streaming Processing in R. R package
version 0.902, URL http://CRAN.R-project.org/package=RStorm.

Kaufman L, Rousseeuw PJ (1990). Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley and Sons, New York.

http://CRAN.R-project.org/package=twitteR
http://CRAN.R-project.org/package=twitteR
http://www.jstatsoft.org/v35/i05/
http://www.jstatsoft.org/v35/i05/
http://CRAN.R-project.org/
http://CRAN.R-project.org/package=clue
http://CRAN.R-project.org/package=clue
http://CRAN.R-project.org/package=RStorm

32 Introduction to stream

Keller-McNulty S (ed.) (2004). Statistical Analysis of Massive Data Streams: Proceedings of
a Workshop. Committee on Applied and Theoretical Statistics, National Research Council,
National Academies Press, Washington, DC.

Kranen P, Assent I, Baldauf C, Seidl T (2009). “Self-Adaptive Anytime Stream Clustering.” In
Proceedings of the 2009 Ninth IEEE International Conference on Data Mining, ICDM 09,
pp- 249-258. IEEE Computer Society, Washington, DC, USA. ISBN 978-0-7695-3895-2.

Last M (2002). “Online Classification of Nonstationary Data Streams.” Intelligent Data
Analysis, 6, 129-147. ISSN 1088-467X.

Leisch F, Dimitriadou E (2010). mlbench: Machine Learning Benchmark Problems. R package
version 2.1-0.

Leydold J (2012). rstream: Streams of Random Numbers. R package version 1.3.2, URL
http://CRAN.R-project.org/package=rstream.

Meyer D, Buchta C (2010). proxzy: Distance and Similarity Measures. R package version
0.4-6, URL http://CRAN.R-project.org/package=proxy.

Qiu W, Joe H (2009). clusterGeneration: Random Cluster Generation. R package version
1.2.7.

R Foundation (2011). R Data Import/Ezport. Version 2.13.1 (2011-07-08), URL http://

cran.r-project.org/doc/manuals/R-data.html.

Rosenberg DS (2012). HadoopStreaming: Utilities for Using R Scripts in Hadoop Streaming.
R package version 0.2, URL http://CRAN.R-project.org/package=HadoopStreaming.

Ryan JA (2013). quantmod: Quantitative Financial Modelling Framework. R package version
0.4-0, URL http://CRAN.R-project.org/package=quantmod.

Sevcikova H, Rossini T (2012). rlecuyer: R Interface to RNG With Multiple Streams. R
package version 0.3-3, URL http://CRAN.R-project.org/package=rlecuyer.

Silva JA, Faria ER, Barros RC, Hruschka ER, Carvalho ACPLFd, Gama Ja (2013). “Data
Stream Clustering: A Survey.” ACM Comput. Surv., 46(1), 13:1-13:31. ISSN 0360-0300.
doi:10.1145/2522968.2522981.

Tu L, Chen Y (2009). “Stream Data Clustering Based on Grid Density and Attraction.” ACM
Transactions on Knowledge Discovery from Data, 3(3), 12:1-12:27. ISSN 1556-4681.

Urbanek S (2011). rJava: Low-level R to Java interface. R package version 0.9-6, URL
http://CRAN.R-project.org/package=rJava.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. Fourth edition. Springer,
New York. ISBN 0-387-95457-0, URL http://www.stats.ox.ac.uk/pub/MASS4.

Vitter JS (1985). “Random Sampling With a Reservoir.” ACM Transactions on Mathematical
Software, 11(1), 37-57. ISSN 0098-3500. doi:10.1145/3147.3165.

http://CRAN.R-project.org/package=rstream
http://CRAN.R-project.org/package=proxy
http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/doc/manuals/R-data.html
http://CRAN.R-project.org/package=HadoopStreaming
http://CRAN.R-project.org/package=quantmod
http://CRAN.R-project.org/package=rlecuyer
http://dx.doi.org/10.1145/2522968.2522981
http://CRAN.R-project.org/package=rJava
http://www.stats.ox.ac.uk/pub/MASS4
http://dx.doi.org/10.1145/3147.3165

Matthew Bolanos, John Forrest, Michael Hahsler 33

Wan L, Ng WK, Dang XH, Yu PS, Zhang K (2009). “Density-based Clustering of Data
Streams at Multiple Resolutions.” ACM Transactions on Knowledge Discovery from Data,
3, 14:1-14:28. ISSN 1556-4681.

Witten IH, Frank E (2005). Data Mining: Practical Machine Learning Tools and Techniques.
The Morgan Kaufmann Series in Data Management Systems, 2nd edition. Morgan Kauf-
mann Publishers. ISBN 0-12-088407-0.

Xie Y (2013). animation: A Gallery of Animations in Statistics and Utilities to Create Ani-
mations. R package version 2.2, URL http://CRAN.R-project.org/package=animation.

Zhang T, Ramakrishnan R, Livny M (1996). “BIRCH: An Efficient Data Clustering Method
for Very Large Databases.” SIGMOD Rec., 25(2), 103-114. ISSN 0163-5808. doi:10.
1145/235968.233324.

Affiliation:

Michael Hahsler

Engineering Management, Information, and Systems
Lyle School of Engineering

Southern Methodist University

P.O. Box 750122

Dallas, TX 75275-0122

E-mail: mhahsler@lyle.smu.edu

URL: http://lyle.smu.edu/ "mhahsler

Matthew Bolanos

Computer Science and Engineering
Lyle School of Engineering
Southern Methodist University
E-mail: mbolanos@smu.edu

John Forrest
Microsoft Corporation
E-mail: jforrest@microsoft.com

http://CRAN.R-project.org/package=animation
http://dx.doi.org/10.1145/235968.233324
http://dx.doi.org/10.1145/235968.233324
mailto:mhahsler@lyle.smu.edu
http://lyle.smu.edu/~mhahsler
mailto:mbolanos@smu.edu
mailto:jforrest@microsoft.com

	Introduction
	Data Stream Mining
	Clustering
	Classification
	Frequent Pattern Mining
	Existing Solution: The MOA Framework

	The stream Framework
	Data Stream Data (DSD)
	Data Stream Task (DST)
	Data Stream Clustering (DSC)

	Evaluating Data Stream Clustering
	Examples
	Creating a data stream
	Reading and writing data streams
	Replaying a data stream
	Clustering a data stream
	Evaluating results
	Reclustering DSC objects with another DSC

	Extending the stream Framework
	Implementing new Data Stream Data (DSD) Classes
	Implementing new Data Stream Task (DST) Classes

	Conclusion and Future Work

