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Abstract

Surrogate endpoints are endpoints which are attractive for use in clinical trials instead
of well-established endpoints because of practical convenience. Two measures of surrogacy
can be obtained in a meta-analytic context: the individual-level R2

indiv and the trial-level
R2

trial. In the case of failure time endpoints, the usual two-step approach estimates a
Kendall’s τ at the individual level using a copula model, and then computes the R2

trial

via a weighted regression. Recently, we also developped an approach based on bivariate
survival models with individual random effects to measure the τ and treatment-by-trial
interactions to measure the R2

trial. We used auxiliary mixed Poisson models to fit such a
model.

The R package surrosurv implements the two-step method with Clayton, Plackett, and
Hougaard copulas (with and without measurement-error adjustment), as well as the mixed
Poisson approach. In this paper, we present the package and we show its use in practice
on individual patient data from a meta-analysis of 4069 patients with advanced/recurrent
gastric cancer from 20 trials of chemotherapy.

Keywords: surrogate endpoint, survival, time-to-event, randomized clinical trials, individual
patient data meta-anaysis, copula, mixed proportional hazard models, Poisson regression,
surrosurv, R.

1. Introduction

Surrogate endpoints are endpoints which can reliably used instead of well-established end-
points and which yield improved practical convenience in terms of cost, rapidity or ease of
assessment, or reduced invasiveness (Burzykowski et al. 2006). A reliable surrogate endpoint
must be strongly associatied with the true endpoints at the individual level and the effect
of the treatment on the surrogate must be assciated with the effect on the true endpoint.
In a meta-analytic context, the usual measure of individual level surrogacy for continuous
endpoints is the R2

indiv and the ususal measure of trial level surrogacy is the R2
trial (Buyse et al.

2000).

In the case of failure time (survival) endpoints, the classical methods developped for normally-
distributed endpoints cannot be used because of right censoring. Burzykowski et al. (2001)
proposed a meta-analytic model for failure time endpoints that measures individual level sur-
rogacy in terms of Kendall (1938)’s τ and trial level surrogacy in terms of R2

trial. Despite the
numerous applications of this approach in the medical literature, difficults exists to fit the
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whole model directly and a two-step procedure is commonly employed. Such a procedure
has some limitations preventing its applicability in a number of applications, including con-
vergence issues which can make the interpretation of the results difficult (Oba et al. 2013;
Burzykowski and Cortiñas Abrahantes 2005). In principle, the most natural framework for
adapting the meta-analytic approach by Buyse et al. (2000) to the survival case is the use
of bivariate mixed proportional hazard models, also known as frailty models (Duchateau and
Janssen 2008). Since the estimation of frailty models with complex structures of random
effects is computationally intensive and can fail to converge, we previously exploited (Rotolo
et al. 201x) the well-known connection between the proportional hazard models and the Pois-
son log-linear models (Whitehead 1980; Laird and Olivier 1981), which has also been used
more recently for individual patient data meta-analyses (Crowther et al. 2012).

In the present paper, we show how all these models can be fitted by use of the R (R Core
Team 2016) package surrosurv (Rotolo 2016). We illustrate the use of the available functions
using individual data of a meta-analysis of 20 randomized trials of chemotherapy, including
4069 patients with advanced/recurrent gastric cancer (GASTRIC group 2013; Paoletti et al.
2013).

2. The evaluation of failure time surrogate endpoints

Let Tij and Sij be the times to the true and the surrogate endpoints, respectively, for patient
j ∈ {1, . . . , ni} in trial i ∈ {1, . . . , N}. Let Zij be the indicator of the treatment arm to which
the j-th patient in the i-th trial has been randomized.

2.1. Two-step copula approach

The model proposed by Burzykowski et al. (2001) for failure time endpoints consists in two
steps, one for the individual and one for the trial level.

Individual-level. At the first the bivariate proportional hazard model is defined by means
of the marginal hazard functions and the copula function accounting for their dependence:

hSij(s;Zij) = hSi(s) exp
{
αiZij

}
hT ij(t;Zij) = hT i(t) exp

{
βiZij

}
Cθ(SSij(s), ST ij(t))

(1)

where hSi(s) and hT i(s) are the trial-specific baseline hazards, αi and βi the treatment effects,
and SSij(s) and STij(t) the survival functions associated to of hT ij and hT ij . The dependence
parameter θ is reparametrized into the individual-level Kendall’s τ , according to the copula
function thanks to the tau() function in the copula package (Hofert et al. 2016; Yan 2007).

In the surrosurv package, Weibull marginal hazards are implemented, together with three
copula functions:

• the Clayton (1978) copula

Cθ(u, v) =
(
u−θ + v−θ − 1

)−1/θ
, (2)

with θ > 0 and Kendall’s τ = θ/(θ + 2);
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• the Plackett (1965) copula

Cθ(u, v) =
[
Q−R1/2

]
/
[
2(θ − 1)

]
, (3)

Q = 1 + (θ − 1)(u+ v),

R = Q2 − 4θ(θ − 1)uv,

with θ > 0 and Kendall’s τ computed numerically as no analytical expression is available;

• the Hougaard (1986) copula

Cθ(u, v) = exp

(
−
[
(− lnu)1/θ + (− ln v)1/θ

]θ)
, (4)

with θ ∈ (0, 1) and Kendall’s τ = 1− θ.

Further details on these three copula models can be found in the vignette('copula',
package = 'surrosurv').

Trial level. At the second step, the estimates of the treatment effects obtained at the first
step are assumed to follow the mixed model(

α̂i
β̂i

)
=

(
αi
βi

)
+

(
εai
εbi

)
, (5)(

αi
βi

)
∼ N

((
α
β

)
,D =

(
d2a dadbρtrial

dadbρtrial d2b

))
, (6)(

εai
εbi

)
∼ N

((
0
0

)
,Ωi =

(
ω2
ai ωaiωbiρεi

ωaiωbiρεi ω2
bi

))
. (7)

where (αi, βi)
′ are the true treatment effects and (εai, εbi)

′ the estimation errors.

The trial-level surrogacy measure is R2
trial = ρ2trial. In practice, the ρtrial is computed via a

linear regression of the βi’s over the αi’s adjusted by measurement error by fixing the Ωi’s at
their estimates from the first step (van Houwelingen et al. 2002) by using the mvmeta package
(Gasparrini et al. 2012; Gasparrini 2015). This adjusted (for measurement error) model is
sometimes computationally challenging and does not always converge. The surrosurv package
returns also the so-called unadjusted R2

trial, obtained using a linear regression — equivalent to
fixing all the elements of Ωi equal to 0 — by weigthing the observations (αi, βi)

′ by the trial
size, in order to account somehow indirectly and approximately for measurement error.

2.2. One-step mixed Poisson approach

Let us assume that the bivariate proportional hazard model given by the first two lines of
equation (1) holds conditionally on an individual random effect uij ∼ N (0, σ2indiv):{

hSij(s | uij) = hSi(s) exp {uij + αiZij}
hT ij(t | uij) = hT i(t) exp {uij + βiZij} .

(8)

Note that this corresponds to a shared frailty model with bivariate clusters (Duchateau and
Janssen 2008). The shared frailty term uij accounts for individual level dependence.
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It is well-known (see for instance Whitehead 1980; Crowther et al. 2012) that the parameters
of Cox models can be estimated by fitting a so-called ‘auxiliary’ Poisson log-linear regression
model, by dividing the time scale into intervals k = 1, . . . ,K. The auxiliary Poisson model
provides the same estimator as the Cox model if the bounds of the intervals are all the
observed event times, and an approximation of the Cox estimators otherwise. In the surrogacy
assessment context, the parameters of the bivariate frailty model (8) can be estimated via a
bivariate mixed Poisson modellog

(
µ
(k)
Sij

)
= µ

(k)
Si + uij + αiZij + log

(
y
(k)
Sij

)
log
(
µ
(k)
T ij

)
= µ

(k)
T i + uij + βiZij + log

(
y
(k)
T ij

) (9)

with y
(k)
Sj and y

(k)
Tj the time spent at risk by subject i in trial j for each endpoint during the

period k.

Individual-level surrogacy. The use of the a shared frailty uij , the estimated variance of
which is σ̂2indiv, can be used to compute an estimate of the Kendall’s τ̂ = 4

∫∞
0 sL(s)L(2)(s)ds−

1, where L(s) and L(2)(s) are the Laplace transform of the frailty distribution and its sec-
ond derivative. As an analytic expression of L(s) is not available for the log-normal frailty
distribution, we approximated it using the Laplace method (Goutis and Casella 1999), im-
plemented in the fr.lognormal() function in the parfm package (Munda et al. 2012; Rotolo
and Munda 2015).

Trial-level surrogacy. In model (9), the same assumptions (6) as in the two-step copula
model are done for the trial-specific treatment effects Thus, the correlation ρtrial between the
two treatment effects provides us with the coefficient of determination R2

trial = ρ2trial, also
referred to simply as R2.

Reduced Poisson models. In order to deal with convergence issues, the surrosurv package
computes four reduced versions of the full model (9).

• Model Poisson T has random trial-treatment interactions αi and βi, but does not
incoroporate individual effects (uij ≡ 0) and it has common baselines between trials

(µ
(k)
Si = µ

(k)
S , µ

(k)
T i = µ

(k)
T ,∀i). This model provides only the trial-level measure of

surrogacy R2
trial.

• Model Poisson I contains individual random effects uij , but not the trial-specific treat-
ment effects (αi = α, βi = β,∀i) and has common baselines between trials. This model
provides only the individual-level measure of surrogacy τ .

• Model Poisson TI incorporates both random trial-treatment interactions (αi, βi)
′ and

individual random effects uij , but still has common baselines between trials. It provides
both individual-level and trial-level measures of surrogacy τ and R2

trial.

• Model Poisson TIa extends the model Poisson TI by accounting for trial-specific base-
line risks, using shared random effects at the trial level: µSi = µS +mi, µT i = µT +mi,
with mi ∼ N (0, σ2m).
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3. A data example within the surrosurv package

We illustrate the use of the function in the surrosurv package by means of the individual
patient data of the advanced GASTRIC meta-analysis (GASTRIC group 2013; Paoletti et al.
2013).

R> library('surrosurv')

Loading required package: optimx

R> packageVersion('surrosurv')

[1] '1.1.4'

The individual data of the 4069 patients, already made public by Buyse et al. (2016), are also
available directly in R in the surrosurv package:

R> data('gastadv')
R> nrow(gastadv)

[1] 4069

The data set contains the following variables:

R> names(gastadv)

[1] "timeT" "statusT" "statusS" "timeS" "trialref" "trt" "id"

where timeT and timeS are the (possibly censored) times for overall survival (T) and for
progression-fre survival (S) expressed in days, statusT and statusS are the associated indi-
cators of censoring (0) or event (1), trialref is the trial indicator (i), trt is the treatment
arm (-0.5 for control and 0.5 for chemotherapy), and id is the patient indicator (j). Fig-
ure 1 shows the survival curves for overall survival, the true endpoint T , and progression-free
survival, the candiddate surrogate S.

4. Fitting the surrogacy models

The surrogacy models presented in Section 2 can be fitted via the surrosurv() function.

The only mandatory argument for the surrosurv() function is data, which has to be a
data.frame with columns

• trialref, a factor containing the trial identifier;

• trt, the treatment arm, coded as -0.5 vs. 0.5;

• id, a factor containing the patient id;
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Figure 1: Survival curves for overall survival (T ) and progression-free survival S in the ad-
vanced GASTRIC meta-analysis (GASTRIC group 2013)

• timeT and timeS, two positive-valued numerical variables, containing the observed or
censoring times of the true endpoint T and of the candidate surrogate S, respectively;

• statusT and statusS, the censoring/event (0/1) indicators of T and S, respectively.

A second argument, models, can optionally contain the list of the models to fit. It can contain
ny value of clayton, plackett, hougaard, or poisson). If not specified, all of them are fitted.

Two further parameters, intWidth and nInts, specify the width and the number of time
intervals for data Poissonization. These parameters are passes to the function poissonize(),
described in the Appendix (Sec. A). Only one of them can be specified. By default, nInts
= 8 which means that the study period is divided into eight periods, the length of which is
fixed so that 1/8th of the observed events falls in each interval.

The optimizer used for optimization of the copula models and the Poisson models can be
passed via the arguments cop.OPTIMIZER and poi.OPTIMIZER, passed to the optimx package
(Nash 2012; Nash et al. 2013).

The last parameter, verbose, is a logical value stating whether the function should print out
the model being fitted (default: FALSE).

The surrogacy models for the advanced GASTRIC cancer meta-analysis are obtained as fol-
lows:

R> allSurroRes <- surrosurv(gastadv, verbose = TRUE)

Estimating model: clayton
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Estimating model: plackett

Estimating model: hougaard

Estimating model: poisson

Note that, the computation time of the surrogacy models can be long. In this example, the
computations required 38 mins on a PC with an Intel® quad-core CPU E3-1280 V2 with 3.60
GHz clock speed and 16GB of RAM. The results are an object of class surrosurv and the
estimated Kendall’s τ and R2 can be easily shown:

R> allSurroRes

kTau R2

Clayton unadj 0.61 0.45

Clayton adj 0.61 0.42

Plackett unadj 0.62 0.45

Plackett adj 0.62 0.41

Hougaard unadj 0.32 0.45

Hougaard adj 0.32 0.38

PoissonT -.-- 1

PoissonI 0.51 -.--

PoissonTI 0.51 0.63

PoissonTIa 0.51 0.83

For each copula model, both the results with measurement error adjustment (adj) and without
adjustment (unadj) are shown.

4.1. Assessing convergence

The function convergence() checks whether convergence criteria are met by each of the fitted
models:

R> convergence(allSurroRes)

maxSgrad minHev minREev

Clayton unadj FALSE FALSE ---

Clayton adj FALSE FALSE TRUE

Plackett unadj FALSE FALSE ---

Plackett adj FALSE FALSE TRUE

Hougaard unadj FALSE TRUE ---

Hougaard adj FALSE TRUE TRUE

PoissonT TRUE TRUE FALSE

PoissonI TRUE TRUE ---

PoissonTI TRUE TRUE TRUE

PoissonTIa TRUE TRUE TRUE
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Three convergence criteria are considered. The first criterion, maxSgrad, verifies whether
the maximum gradient is small enough. The two other criteria, minHev and minREev, verify
whether the minimum eigenvalue of the Hessian matrix of the fixed parameters (H) and of the
covariance matrix of the random effects (RE) are big enough, in order to assure the positive
definitess of the two matrices. Two parameters can be used to tune the thresholds for ‘small
enough’ maximum gradient and for ‘big enough’ minmum eigen value: kkttol (1e-2 by
default), and kkt2tol (1e-8 by default).

If the values of the minimum gradient and of the maximum eigenvalues are needed, the
function convals() can be used:

R> convals(allSurroRes)

maxSgrad minHev minREev

Clayton unadj 1.5e+00 -6.1e+00 ---

Clayton adj 1.5e+00 -6.1e+00 9.8e-03

Plackett unadj 4.1e+02 -5.2e+00 ---

Plackett adj 4.1e+02 -5.2e+00 8.7e-03

Hougaard unadj 1.4e+01 7.7e-01 ---

Hougaard adj 1.4e+01 7.7e-01 7.7e-03

PoissonT 1.3e-05 1.3e+02 6.3e-12

PoissonI 2.0e-05 6.8e+01 ---

PoissonTI 7.1e-06 6.7e+01 2.0e-02

PoissonTIa 5.0e-05 9.4e+07 1.0e-01

5. Prediction of the treatment effect

When fitting surrogacy models, an estimate of the treatment effects on the two endpoints
is computed internally for each trial. The function predict(), applied to an object of class
surrosurv, returns the treatment effect predictions for each trial. The minimal syntax is
predict(allSurroRes), but one can be interested in prediction of only one of the fitted
models:

R> predict(allSurroRes, models = 'PoissonTI')

Treatment effect prediction for surrosurv object

Poisson TI

1 2 3 4 5 6

Treatment effects on S: -0.52 -0.42 -0.38 -0.08 -0.51 -0.38 ...

Treatment effects on T: -0.26 -0.08 -0.27 0.41 -0.41 -0.15 ...

This function returns an object of class predictSurrosurv.

The predicted treatment effects can also be vizualied graphically using the linear regression of
the effect on T given the effect on S. The usual surrogacy plot is obtained using the function
plot() for the classes surrosurv and predictSurrosurv. For example, the surrogacy plots
for the adjusted Clayton copula and the Poisson TI models in the advanced GASTRIC meta-
analysis (Fig. reffig:predictions) can be obtained as follows:
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Figure 2: Predictions for the advanced GASTRIC meta-analysis (GASTRIC group 2013), as
computed by the adjusted Clayton copula model, which had poor convergence metrics, and
by the Poisson TI model, which was deemed to have converged. HR = hazard ratio.

R> plot(allSurroRes, c('Clayton adj', 'PoissonTI'))

The argument surro.stats controls whether the estimated Kendall’s τ and R2 must be
displayed on the plots; pred.ints controls whether the prediction intervals must be plotted;
show.ste controls whether the surrogate threshold effect (STE) must be displayed on the
plots. The STE is the minimal treatment effect to be observed on the surrogate endpoint S
to predict a statistically significant effect on the true endpoint T (Burzykowski and Buyse
2006). The value of the STE estimated by each surrogacy model can be obtained via the
function ste(), both in terms of regression parameter (beta) and in terms of hazard ratio
(HR):

R> ste(allSurroRes)

beta HR

Clayton.unadj -0.61 0.54

Clayton.adj -0.30 0.74

Plackett.unadj -0.61 0.54

Plackett.adj -0.30 0.74

Hougaard.unadj -0.61 0.54

Hougaard.adj -0.28 0.76

PoissonT -0.12 0.88

PoissonTI -0.41 0.66

PoissonTIa -1.04 0.36
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5.1. Leave-one-trial-out cross-validation

One technique used to assess the validity of the surrogacy model is to apply the leave-one-out
principle to the trials in the meta-analysis and to cross-validate the results of the model fitted
on N−1 trials thanks to the prediction in the left-out trial of the treatment effect on T , based
on the observed effect on S (Michiels et al. 2009; Mauguen et al. 2013; Rotolo et al. 2017).
The function loovc() allows performing this evaluation for a given list of models. The cross-
validation requires fitting as many models as the number of trials N . As each model is usually
very time-consuming to converge, a fortiori the cross-validation is too. For that reason, the
function loovc() has been implemented to fit the N models by parallel computing. The
argument parallel is a logical for allowing or not such a parallelization, whereas nCores
allows specifying the number of cores to use. By default, parallel = TRUE and nCores is set
to the minimum between N and the maximum number of cores on the machine.

R> loocvRes <- loocv(gastadv, models = c('Clayton', 'PoissonTI'))

Parallel computing on 8 cores (the total number of cores detected)

The results of the crossvalidation can be easily printed

R> loocvRes

Clayton copula (Unadjusted)

1 2 3 4 5 6

obsBeta -0.31 -0.21 -0.09 -0.02 -0.22 -0.34 ...

lwr -0.76 -0.65 -0.42 -0.51 -0.48 -0.62 ...

upr -0.05 0.02 0.28 0.17 0.21 0.09 ...

Clayton copula (Adjusted)

1 2 3 4 5 6

obsBeta -0.309 -0.212 -0.095 -0.023 -0.222 -0.342 ...

lwr -0.571 -0.491 -0.277 -0.358 -0.332 -0.448 ...

upr -0.213 -0.130 0.105 -0.001 0.042 -0.078 ...

Poisson TI

1 2 3 4 5 6

obsBeta -0.31 -0.21 -0.09 -0.02 -0.22 -0.34 ...

lwr -0.87 -0.67 -0.42 -0.59 -0.29 -0.54 ...

upr -0.45 -0.21 0.57 0.23 0.23 -0.22 ...

and plotted (Fig. 3) by showing, for each trial, the comparison between the observed treatment
effect on T , and its prediction interval, based on the observed treatment effect on S for the
same trial and the surrogacy model fitted on the other N − 1 trials:

R> plot(loocvRes)
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Figure 3: Leave-one-trial-out cross-validation results for the advanced GASTRIC meta-
analysis (GASTRIC group 2013). Vertical lines are the 95% prediction intervals (PI) of
the treatment effect on overall survival (OS). Dots are the observed treatment effects on OS
(green = within the PI, magenta = out of the PI).
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6. Utilities for data simulation

Most of the publications that discuss statistical methods for evaluating failure time surrogate
endpoints do not show simulations till date. To our knowledge, rare exceptions are those
papers by Burzykowski and Cortiñas Abrahantes (2005); Shi et al. (2011); Renfro et al. (2012,
2014, 2015).

6.1. Data generation based on a Clayton copula

The data geration method used by Burzykowski and Cortiñas Abrahantes (2005) and by
Renfro et al. (2014, 2015) reflects the data generating process underlying the two-step copula
model (Sec. 2.1).

We implemented this approach for the Clayton family (Eq. (2)), which is available using the
function simData.cc(). This function generates data as follows:

• trial-specific random effects are generated from(
mSi

mTi

)
∼ N

((
0

0

)
,

(
σ2S σSσTρm

σSσTρm σ2T

))
• trial-specific treatment effects are generated from(

αi
βi

)
∼ N

((
α
β

)
,

(
d2a dadbρtrial

dadbρtrial d2b

))
• exponentially distributed individual times are simulated for S, conditionally on the

random effects generated before.

Sij = − log(USij)/λSij , with λSij = exp(µS +mSi + αiZij) and USij ∼ U(0, 1)

• exponentially distributed individual times are simulated for T | S, conditionally on the
random effects generated before and on the value of S

Tij = − log(U ′T ij)/λT ij , with λT ij = exp(µT +mTi + βiZij),

U ′T ij =
[(
U
−θ/(1+θ)
T ij − 1

)
U−θSij + 1

]−1/θ
, and

UT ij ∼ U(0, 1).

The details of the arguments of the simData.cc() function can be obtained using help(simData.cc).

6.2. Data generation based on a mixture of half-normal and exponential
random variables

The data geration method used by Shi et al. (2011) and by Renfro et al. (2012) is based on
the results by Cowles (2004), which showed that a Weibull distribution can be expressed as
a scaled mixture of half-normal distribution and an exponential distribution with unit rate
parameter.

This approach, implemented in the function simData.mx(), which generates data as follows:
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• trial-specific random effects are generated from(
mSi

mTi

)
∼ N

((
0

0

)
,

(
σ2S σSσTρm

σSσTρm σ2T

))

• trial-specific treatment effects are generated from(
αi
βi

)
∼ N

((
α
β

)
,

(
d2a dadbρtrial

dadbρtrial d2b

))

• individual half-normal random variables Y ∗ij are generated from the distribution

f(y∗) =
2√
2π

exp

(
−y
∗2

2

)
, y∗ ∈ R+

• unit rate parameter exponential random variables ΛSij and ΛT ij are generated from
− log(USij)Sij and − log(UT ij), with USij ∼ U(0, 1) and UT ij ∼ U(0, 1)

• exponentially distributed individual times are simulated for S and T from

Sij =
(
Y ∗ij
√

2ΛSij

)
exp(µS +mSi + αiZij),

Tij =
(
Y ∗ij
√

2ΛT ij

)
exp(µS +mTi + αiZij).

The details of the arguments can be obtained using help(simData.mx).

6.3. Data generation based on mixed proportional hazard models

In Rotolo et al. (201x), we also generated data using individual random effects to control
individual-level surrogacy. This approach is implemented in the function simData.re() and
generates data as follows:

• trial-specific random effects and trial-specific treatment effects were generated as in the
Clayton copula case

• individual random effects were generated from uij ∼ N (0, σ2), with σ2 depending on
the scenario (according to the Kendall’s τ)

• exponentially distributed individual times were simulated for S and T , conditionally
on the random effects generated before. We used the inverse transform method, which
consists in transforming a uniform random variable by means of the inverse of the
probability distribution function of the random variable to be generated (see for instance
Robert and Casella 2009, § 2.1.2)

Sij = − log(USij)/λSij , with λSij = exp(µS +mSi + αiZij + uij) and USij ∼ U(0, 1),

Tij = − log(UT ij)/λT ij , with λT ij = exp(µT +mTi + βiZij + uij) and UT ij ∼ U(0, 1).
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The details of the arguments can be obtained using help(simData.re).
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A. Data poissonization

Fitting auxiliary Poisson models for estimating the parameters of a proportional hazard model
(Whitehead 1980; Crowther et al. 2012) needs that data are rearranged in order to provide,
for each time period, the number of events and the total time passed at risk. The function
poissonize()in the surrosurv package allows to easily perform the necesasry data manipu-
laton easily and quickly. The core of the function has been derived from the original code
publicly shared by Kovalchik (2013).

The main argument of the poissonize() function is data, a data frame with columns: id,
the patient identifyier; time, the event/censoring time; status, the event (1) or censoring (0)
indicator; ..., other factors such like the covariables needed in the regression model.

The breakpoints between time intervals can be entered in the second argument, all.breaks.
Otherwise, if all.breaks is not specified, one can specify either the width of the time intervals
interval.width, or their number nInts (used only also if is.null(interval.width)).

Any other variables to be kept in the poissonized data frame can be entered in factors.
The last argument (compress) is a logical indicating whether the record with the same factor
profile should be summarized into one record, i. e. whether the data should be expressed in a
short form.

In the advanced GASTRIC cancer example, we first change the column names in order to
match the ones needed by poissonize():

R> gastadv.poi <- gastadv

R> gastadv.poi$time <- gastadv.poi$timeT / 365.25

R> gastadv.poi$status <- gastadv.poi$statusT

We fit the proportional hazard model, to which we will compare the results of the auxiliary
Poisson model.
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R> fitcox <- coxph(Surv(time, status) ~ trt, data = gastadv.poi)

R> cox.base <- basehaz(fitcox, centered = FALSE)

We ‘possonize’ the data over 10 intervals (the default) and we fit the auxiliary Poisson model.

R> gastadv.poi <- poissonize(gastadv.poi, nInts = 10, factors = 'trt')
R> gastadv.poi

interval trt m Rt N

1 0 -0.5 181 292 1668

2 0.1832128678987 -0.5 180 173 1475

3 0.30921697467488 -0.5 192 149 1288

4 0.435221081451061 -0.5 159 132 1088

5 0.567018480492813 -0.5 154 114 912

6 0.703885010266941 -0.5 156 108 751

7 0.867545516769336 -0.5 157 103 584

8 1.07320739219713 -0.5 143 101 414

9 1.39328678986995 -0.5 117 97 239

10 2.07255030800821 -0.5 60 87 94

11 0 0.5 216 421 2401

12 0.1832128678987 0.5 221 258 2167

13 0.30921697467488 0.5 213 229 1935

14 0.435221081451061 0.5 247 207 1706

15 0.567018480492813 0.5 237 181 1446

16 0.703885010266941 0.5 225 176 1203

17 0.867545516769336 0.5 228 171 965

18 1.07320739219713 0.5 221 183 715

19 1.39328678986995 0.5 211 205 460

20 2.07255030800821 0.5 117 171 204

R> fitpoi <- glm(m ~ -1 + interval + trt + offset(log(Rt)),

+ data = gastadv.poi, fam = 'poisson')

The function plotsson() can be used to draw the survival curves (or the instantaneous
hazard) estimated by the auxiliary Poisson model:

R> plot(stepfun(cox.base$time[-nrow(cox.base)],

+ exp(-cox.base$hazard)),

+ ylim = 0:1, xlim = c(0, 5), col = 1, lwd = 2, bty = 'l', yaxs = 'i',
+ do.points = FALSE, verticals = FALSE, xaxs = 'i',
+ main = 'Overall Survival\nAdvanced GASTRIC meta-analysis',
+ xlab = 'Years', ylab = 'Survival probability')
R> lines(stepfun(cox.base$time[-nrow(cox.base)],

+ exp(-cox.base$hazard * exp(coef(fitcox)['trt']))),
+ col = 2, pch = '', lwd = 2)

The treatment effect estimated by the Cox model is −0.14 (SE = 0.03), and it is of −0.14
(SE = 0.03) when using the auxiliary Poisson model.
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Figure 4: Overall survival curves in the advanced GASTRIC meta-analysis (GASTRIC group
2013). (a) Comparison between the survival probability obtanied using the Breslow estimator
in the Cox model (solid lines) and those obtained using the auxiliary Poisson model (dashed
lines). (b) Piecewise constant hazard estimated by the auxiliary Poisson model
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