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Abstract

The use of GPS-enabled tracking devices and heart rate monitors is becoming increas-
ingly common in sports and fitness activities. The trackeR package aims to fill the gap
between the routine collection of data from such devices and their analyses in R. The
package provides methods to import tracking data into data structures which preserve
units of measurement and are organised in sessions. The package implements core in-
frastructure for relevant summaries and visualisations, as well as support for handling
units of measurement. There are also methods for relevant analytic tools such as time
spent in zones, work capacity above critical power (known as W ′), and distribution and
concentration profiles. A case study illustrates how the latter can be used to summarise
the information from training sessions and use it in more advanced statistical analyses.
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1. Introduction

Recent technological advances allow the collection of detailed data on fitness activities and
on multiple aspects of training and competition in professional sport. The focus of this paper
is on data collected by GPS-enabled tracking devices and heart rate monitors. Such devices
are routinely used in fitness activities such as running and cycling, and also during training
in sports like field hockey and football. Basic questions associated with tracking data include
how often, much, or hard an individual or a group trains, and a more advanced outlook tries
to explain the impact of training on athlete physiology or performance.

Tools for basic analytics are usually offered by the manufacturers of the tracking devices,
such as Garmin, Polar, and Catapult, and through a wide range of applications for devices
such as smartphones and smartwatches, e.g., Strava Running and Cycling GPS, Endomondo
– Running & Walking, and Runtastic Running GPS Tracker. A notable open-source effort
is Golden Cheetah (http://www.goldencheetah.org), which has now, perhaps, become the
gold standard in terms of facilities for importing tracking data from cycling activities and for
associated analytics. However, Golden Cheetah is not designed to offer general flexibility in
the statistical analysis of such sports tracking data.

The R system for statistical computing (R Core Team 2015) with its ecosystem of add-on
packages provides a wide range of possibilities for the handling and analysis of tracking data.

GPS-enabled tracking devices typically record irregularly sampled spatio-temporal data. In-
frastructure for such data is provided in the trajectories package (Pebesma and Klus 2015),

http://www.goldencheetah.org
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which is developed around the “STIDF” class of the spacetime package (Pebesma 2012). How-
ever, the “STIDF” class does not accommodate missing values in positional or temporal infor-
mation. Since this is commonly the case in data from GPS-enabled tracking devices (e.g.,
sequences of missing values in the positional data because the GPS signal is temporarily lost),
a different approach is taken in trackeR (see Section 4). Other packages that offer tools for
spatio-temporal data include adehabtitatLT (Calenge 2006), trip (Sumner 2015) and move

(Kranstauber and Smolla 2015). The main focus of those packages is on animal tracking,
e.g., estimation of habitat choices, and they are not directly suitable for tracking the various
aspects of athlete activity.

Despite the wide range of R packages available, there is only a handful of packages specific
to sport data and their analysis. The available packages focus on topics such as sports man-
agement (RcmdrPlugin.SM, Champely 2012), ranking sports teams (mvglmmRank, Karl and
Broatch 2015), and accessing betting odds (pinnacle.API, Blume, Jhirad, and Gassem 2015).
SportsAnalytics is a package that focuses on the analysis of performance data, and currently
offers only “a selection of data sets, functions to fetch sports data, examples, and demos” (Eu-
gster 2013). The cycleRtools package (Mackie 2015) provides functionality to import cycling
data into R as well as tools for cycling-specific, descriptive analyses.

The trackeR package aims to fill the gap between the routine collection of data from GPS-
enabled tracking devices and the analyses of such data within the R ecosystem. The package
provides utilities to import sports data from GPS-enabled devices, and, after careful process-
ing, organises them in data objects which are organised in separate sessions/workouts and
carry information about the units of measurement (e.g., distance and speed units) as well
as of any data operations that have been carried out (e.g., smoothing). The package also
implements core infrastructure for the handling of measurement units and for summarising
and visualising tracking data. It also provides functionality for calculating time in zones (e.g.,
Seiler and Kjerland 2006), work capacity W ′ (Skiba, Chidnok, Vanhatalo, and Jones 2012),
and distribution and concentration profiles (Kosmidis and Passfield 2015), including a few
methods for the analysis of these profiles.

Section 2 gives an overview of the package and introduces the basic objects and the meth-
ods that apply to them. Section 3 describes the importing utilities, and Section 4 details
the structure and construction of the “trackeRdata” object, which is at the core of trackeR.
Section 5 is devoted to the calculation of relevant summaries (time in zones, work capac-
ity, distribution and concentration profiles) and the corresponding methods for visualisation.
Section 6 and Section 7 focus on basic methods for unit manipulation as well as smoothing
and thresholding. The case study in Section 8 investigates the key features in 27 sessions
through a functional principal components analysis (e.g., Ramsay and Silverman 2005) on
the concentration profiles for speed.

2. Package structure

Figures 1 and 2 show a schematic overview of the package structure, split into two parts for
reading data and further operations. Squared boxes indicate objects of a particular class,
diamonds indicate files of a particular format, and boxes with rounded corners represent
methods that apply to those objects. The respective class and method names are given in
the boxes. An arrow from an object/file type to a method indicates that the method applies
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Figure 1: Package structure - Functionality to read tracking data.

to objects of the respective class; an arrow from a method to an object indicates that the
method outputs objects of the respective class. A bi-directional arrow between a method and
an object indicates that the method’s input and output are of the same class, such as the
method threshold() and objects of class “trackeRdata”). Arrows to or from groups of boxes
apply to each box in the group. For example, the method changeUnits() applies to objects
of classes “trackeRdataZones”, “trackeRdataSummary”, “trackeRWprime”, “distrProfile”,
and “conProfile”.

Data from various formats is imported and stored in the central data object of
class “trackeRdata” from which summaries for descriptive purposes or further analyses can
be derived. Methods for visualisation and data handling are available for data objects and
summary objects. A list of all functionality is provided in Tables 1 and 2.

3. Import utilities

trackeR provides utilities for data in common formats from GPS-enabled tracking devices.
The family of the supplied reading functions, read*(), currently includes functions for read-
ing TCX (Training Centre XML), DB3 (for SQLite, used, e.g., by devices from GPSports)
and Golden Cheetah’s JSON files. These functions read the tracking data, and return a
data.frame with a specific structure.

The following code chunk illustrates the use of the readTCX() function using a TCX file that
ships with the package and shows the name and type of variables that are present in the
resulting data frame.

R> filepath <- system.file("extdata", "2013-06-08-090442.TCX",

+ package = "trackeR")

R> runDF <- readTCX(file = filepath, timezone = "GMT")

R> str(runDF)
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Function Class Description

readTCX() TCX file read TCX file
readDB3() DB3 file (SQLite) read DB3 file
readJSON() Golden Cheetah’s JSON file read JSON file
readContainer() TCX/DB3/JSON file read a TCX/DB3/JSON file
readDirectory() TCX/DB3/JSON files read all TCX/DB3/JSON files in a

directory
trackeRdata() “data.frame” construct a “trackeRdata” object
c() “trackeRdata” combine sessions
[] “trackeRdata” subset sessions
plot() “trackeRdata” plot session profiles
plotRoute() “trackeRdata” plot route on a static map
leafletRoute() “trackeRdata” plot route on an interactive map
threshold() “trackeRdata” apply lower and upper bounds on data

range
smoother() “trackeRdata” smooth data by applying a summary

function such as mean or median to a
window

getUnits() “trackeRdata” access units of measurement
changeUnits() “trackeRdata” change units of measurement
nsessions() “trackeRdata” number of sessions
fortify() “trackeRdata” convert object into a data frame for

plotting
summary() “trackeRdata” summarise sessions
print() “trackeRdataSummary” print sessions summaries
getUnits() “trackeRdataSummary” access units of measurement
changeUnits() “trackeRdataSummary” change units of measurement
nsessions() “trackeRdataSummary” number of sessions
fortify() “trackeRdataSummary” convert object into a data frame for

plotting
plot() “trackeRdataSummary” plot session summaries
timeline() “trackeRdataSummary” plot timeline summary
zones() “trackeRdata” time spent in zones
getUnits() “trackeRdataZones” access units of measurement
changeUnits() “trackeRdataZones” change units of measurement
nsessions() “trackeRdataZones” number of sessions
fortify() “trackeRdataZones” convert object into a data frame for

plotting
plot() “trackeRdataZones” plot zone summaries
Wprime() “trackeRdata” calculate W ′ balance or W ′ expended

plot() “trackeRWprime” plot W ′ balance or W ′ expended

nsessions() “trackeRWprime” number of sessions

Table 1: Functions available in the trackeR package (part 1).
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Figure 2: Package structure - Functionality to analyse tracking data.

✬data.frame✬: 1191 obs. of 9 variables:

$ time : POSIXct, format: "2013-06-08 08:04:42" ...

$ latitude : num 51.4 51.4 51.4 51.4 51.4 ...

$ longitude : num 1.04 1.04 1.04 1.04 1.04 ...

$ altitude : num 6.2 6.2 6.2 6.2 6.2 ...

$ distance : num 0 1.68 5.28 8.33 14.88 ...

$ heart.rate: num 83 84 84 86 89 93 96 98 101 102 ...

$ speed : num 0 0.594 1.416 1.928 2.614 ...

$ cadence : num NA 54 74 97 97 97 97 98 97 97 ...

$ power : num NA NA NA NA NA NA NA NA NA NA ...

Power is not available in the above data frame because the data come from running training.
Times are taken here to be in GMT. The default for argument timezone is "" and is system-
specific, see ?as.POSIXct for details.

trackeR can accommodate the addition of extra formats by simply authoring appropriate
import functions. Such functions should take as input the path of the file to be read and
return a data frame with the same structure as in the above example.
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Function Class Description

distributionProfile() “trackeRdata” calculate distribution profiles
c() “distrProfile” combine distribution profiles
getUnits() “distrProfile” access units of measurement
changeUnits() “distrProfile” change units of measurement
nsessions() “distrProfile” number of sessions
smoother() “distrProfile” smooth distribution profiles
fortify() “distrProfile” convert object into a data frame for

plotting
plot() “distrProfile” plot distribution profiles
profile2fd() “distrProfile” convert profiles to “fd” class
funPCA() “distrProfile” functional principal components analy-

sis
concentrationProfile() “distrProfile” calculate concentration profiles
c() “conProfile” combine concentration profiles
getUnits() “conProfile” access units of measurement
changeUnits() “conProfile” change units of measurement
nsessions() “conProfile” number of sessions
smoother() “conProfile” smooth concentration profiles
fortify() “conProfile” convert object into a data frame for

plotting
plot() “conProfile” plot concentration profiles
profile2fd() “conProfile” convert profiles to “fd” class
funPCA() “conProfile” functional principal components analy-

sis

Table 2: Functions available in the trackeR package (part 2).

4. trackeRdata class

4.1. Object structure

The core object of trackeR has class “trackeRdata”. The “trackeRdata” objects are session-
based, unit-aware and operation-aware structures, which organise the data in a list of mul-
tivariate zoo objects (Zeileis and Grothendieck 2005) with one element per session. The
observations within each session are ordered according to the time stamps as these are read
from the GPS-enabled tracking devices. Each “trackeRdata” object has an attribute on the
measurement units of the data it holds, and, if applicable, an attribute detailing the opera-
tions, such as smoothing, it has gone through.

“trackeRdata” objects result from the constructor function trackeRdata(), which takes as
input the output of the read*() functions. Apart from the allocation of observations into
distinct sessions, the constructor function also performs some data processing, including basic
sanity checks (for example, removing observations with negative or missing values for cumula-
tive distance or speed), handling of measurement units, correction of distances using altitude
data if required, and data imputation, discussed in Section 4.5).
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4.2. Constructor function

The interface of the constructor function for class “trackeRdata” is

trackeRdata(dat, units = NULL, cycling = FALSE, sessionThreshold = 2,

correctDistances = FALSE, country = NULL, mask = TRUE,

fromDistances = TRUE, lgap = 30, lskip = 5, m = 11)

dat is the data frame containing the tracking data and units is used to specify the units of
measurement. Table 3 shows the currently supported units and notes the units that are used
by default when units = NULL. The argument cycling flags the data as coming from cycling
session(s) rather than running session(s). This affects the calculation of W ′ (based on power
or speed for cycling and running, respectively) and the thresholds applied before plotting the
session data. The other arguments are specific to the data processing operations, which are
briefly described in the following subsections.

4.3. Identifying distinct sessions

The constructor function groups the observations into sessions according to their time stamps.
Specifically, the time stamps in the data from the read*() functions are first sorted, and all
consecutive observations whose time stamps are no further apart from each other than a
specified threshold t∗ are considered to belong to a distinct session. The value of t∗ is set via
the sessionThreshold argument of the trackeRdata() function and it defaults to 2 hours.

4.4. Distance correction using altitude data

If the distances in the data have been calculated solely based on latitude and longitude data,
without taking into account the altitude, then the distance covered can be underestimated.
The correctDistances argument of the trackeRdata() function controls whether the dis-
tances should be corrected for altitude changes.

If the uncorrected distance covered at time point ti is d2,i, then setting correctDistances =

TRUE uses the Pythagorean theorem to correct the distance covered between time point ti−1

and time point ti to

di − di−1 =
√

(d2,i − d2,i−1)2 + (ai − ai−1)2 ,

where di and ai are the corrected cumulative distance and the altitude at time ti, respectively.

If no altitude measurements are available, then these are extracted from the SRTM 90m

Digital Elevation Data via the raster package (Hijmans 2015) using the latitude and longitude
measurements. The arguments country and mask control the extraction of altitudes.

4.5. Imputation process

Occasionally, there is a large time difference between consecutive observations in the same
session, sometimes of the order of several minutes. This can happen, for example, if the
device is intentionally paused by the athlete or if the proprietary algorithm controlling the
operating sampling rate of the device detects no significant change in position. For example,
in the manual of a GPS device, the Forerunner➞ 310XT, it is stated that “The Forerunner
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Figure 3: Illustration of the imputation process for speed with m = 11.

uses smart recording. It records key points where you change direction, speed, or heart rate”

(Garmin Ltd. 2013). In both cases, interpolating directly to get the speed or power will lead
to overestimation of the total workload within those intervals.

We assume that such intervals appear only when there is no significant work happening, and
hence impute them with observations with zero speed (for running) or zero speed and power
(for cycling).

Figure 3 shows a schematic representation of the imputation process for speed. The parame-
ters lgap, m and lskip control the imputation, and can be specified via the lgap, m and lskip

arguments of the trackeRdata() function, respectively.

If the observations at times ti and ti+1 are more than lgap seconds apart, then it is assumed
that there is no significant work happening between ti and ti+1. The number of imputed
records in the interval is m, and consists of two ’outer’ records and m−2 ’inner’ records. The
’outer’ records are lskip seconds apart from the existing observations forming the beginning
and the end of the interval, respectively. The ’inner’ records are h = (ti+1−ti−2lskip)/(m−1)
seconds apart.

The imputed records between ti and ti+1 have zero speed or power, and the latitude, longitude
and altitude measurements are set to their values at time ti. All other variables are set to NA.

trackeRdata() also adds five records at the beginning and five at the end of a session, based
on the assumption that there is no activity before and after the available records. These
observations have zero speed or power, their latitude, longitude and altitude measurements
are as in the first and last observations, respectively, and all other variables are set to NA.
The imputed records are one second apart from each other and from the first and the last
observation, respectively.

After the imputation process, the cumulative distances are updated based on the imputed
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speeds and the time differences between consecutive observations, according to

di+1 = di + si(ti+1 − ti)

where si and di denote the speed and cumulative distance at time point ti, respectively.

The following code chunk takes as input the raw data in the data frame runDF and constructs
the corresponding “trackeRdata” object.

R> runTr0 <- trackeRdata(runDF)

The function readContainer() is a convenience wrapper that calls the suitable reading func-
tion and, then, trackeRdata() for the data processing and the organisation of the data in a
“trackeRdata” object (see ?readContainer for the available arguments). For example,

R> runTr1 <- readContainer(filepath, type = "tcx", timezone = "GMT")

R> identical(runTr0, runTr1)

[1] TRUE

The function readDirectory() allows the user to read all files of a supported format in
a directory, rather than calling, e.g., readContainer() on each file separately. Using the
argument aggregate, the user can decide if all data are first combined in a data frame and
then split into sessions solely based on the time difference between consecutive observations.
This way, e.g., warm-up and cool-down phases are put into the same session as the central
part of training, even if they are recorded in separate container files. Alternatively, data from
different container files are always stored in separate sessions.

trackeR ships with two “trackeRdata” objects containing 1 and 27 running sessions, respec-
tively, and which can be loaded via

R> data("run", package = "trackeR")

R> data("runs", package = "trackeR")

We will use those objects for the illustrations throughout the paper.

5. Session summaries and visualisation

trackeR provides methods for summarising sessions in terms of scalar summaries, the time
spent exercising in specified zones, the concept of work capacity, and distribution and con-
centration profiles.

5.1. Visualisation

For a first visual inspection of the data, the plot() method shows by default the evolution
of heart rate and pace over the course of the selected sessions. For example, Figure 4 shows
the evolution of heart rate and pace for the first three sessions in the runs object.

R> plot(runs, session = 1:3)
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Figure 4: Heart rate and pace over the course of sessions 1–3.

The route covered during a session can also be displayed on a static map via the plotRoute()
method. The plotRoute() method uses the ggmap package (Kahle and Wickham 2013) and,
hence, can work with the sources and maps supported by ggmap. For example, Figure 5 shows
the route covered during session 4 in runs using a map downloaded from Open Street Map.
Interactive maps can be produced with leafletPlot(), using the leaflet package (Cheng and
Xie 2016).

R> plotRoute(runs, session = 4, zoom = 13, source = "osm")

5.2. Scalar summaries

Each session can be summarised through common summary statistics using the summary()

method. Such a session summary includes estimates of the total distance covered, the total
duration, the time spent moving, and work to rest ratio. It also includes averages of speed,
pace, cadence, power, and heart rate, calculated based on total duration or the time spent
moving.

An athlete is considered to be moving if the speed is larger than some threshold s∗. This
threshold can be set via the movingThreshold argument of the summary() method, and the
package assumes that anything between not moving at all and walking with a speed below
that threshold is resting. The default value for movingThreshold has been set to 1 meter per
second, which is just below the speed humans prefer to walk at on average (1.4 meters per
second; see Bohannon 1997).
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Figure 5: Route covered during session 4 on a map from Open Street Map.

The “average speed moving” is calculated as total distance covered divided by time moving
while “average speed” is calculated as total distance divided by total duration. The average
pace (moving) is calculated as the inverse of the average speed (moving). The work to rest
ratio is calculated as time moving divided by (total duration - time moving). The averages
for cadence, power, and heart rate (total and moving) are weighted averages with weights
depending on the time difference to the next observation. These averages also need to take
into account missingness in the observations. For a variable of interest V , we can calculate a
weighted mean for the total session while accounting for missing values via

∑

i

vi
∆iKi

∑

i∆iKi

and its counterpart for the part of the session spent in motion via

∑

i

vi
∆iKiI(si > s∗)

∑

i∆iKiI(si > s∗)

where vi is the value of V at time point ti, Ki is 1 if vi is available, i.e., not missing, and 0
otherwise, I(·) denotes the indicator function, and ∆i = ti − ti−1 the time difference between
observations at ti and ti−1.
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The summary() method for “trackeRdata” objects returns a data frame which can be used
for further analysis. The return object is classed as “trackeRdataSummary” for which several
methods are available. With the print() method, one can set the number of digits printed for
the scalar summary statistics. The following example shows the summaries for sessions 1–2
with the default number of digits of 2 and then the summary of session 1 with 3 digits for
comparison.

R> summary(runs, session = 1:2)

*** Session 1 ***

Session times: 2013-06-01 17:32:15 - 2013-06-01 18:37:56

Distance: 14130.7 m

Duration: 65.68 mins

Moving time: 64.17 mins

Average speed: 3.59 m_per_s

Average speed moving: 3.67 m_per_s

Average pace (per 1 km): 4:38 min:sec

Average pace moving (per 1 km): 4:32 min:sec

Average cadence: 88.66 steps_per_min

Average cadence moving: 88.87 steps_per_min

Average power: NA W

Average power moving: NA W

Average heart rate: 141.11 bpm

Average heart rate moving: 141.13 bpm

Average heart rate resting: 136.76 bpm

Work to rest ratio: 42.31

Moving threshold: 1 m_per_s

*** Session 2 ***

Session times: 2013-06-02 06:23:43 - 2013-06-02 07:09:47

Distance: 9450.24 m

Duration: 46.07 mins

Moving time: 44.13 mins

Average speed: 3.42 m_per_s

Average speed moving: 3.57 m_per_s

Average pace (per 1 km): 4:52 min:sec

Average pace moving (per 1 km): 4:40 min:sec

Average cadence: 88.21 steps_per_min

Average cadence moving: 88.25 steps_per_min

Average power: NA W

Average power moving: NA W

Average heart rate: 139.48 bpm

Average heart rate moving: 139.44 bpm
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Average heart rate resting: 141.16 bpm

Work to rest ratio: 22.83

Moving threshold: 1 m_per_s

R> runSummary <- summary(runs, session = 1)

R> print(runSummary, digits = 3)

*** Session 1 ***

Session times: 2013-06-01 17:32:15 - 2013-06-01 18:37:56

Distance: 14130.7 m

Duration: 1.095 hours

Moving time: 1.069 hours

Average speed: 3.586 m_per_s

Average speed moving: 3.67 m_per_s

Average pace (per 1 km): 4:38 min:sec

Average pace moving (per 1 km): 4:32 min:sec

Average cadence: 88.664 steps_per_min

Average cadence moving: 88.874 steps_per_min

Average power: NA W

Average power moving: NA W

Average heart rate: 141.107 bpm

Average heart rate moving: 141.131 bpm

Average heart rate resting: 136.762 bpm

Work to rest ratio: 42.308

Moving threshold: 1 m_per_s

The plot() method shows the evolution of the various summary statistics over calender time
or over the course of the sessions. For example, the following code chunk produces Figure 6.

R> runSummaryFull <- summary(runs)

R> plot(runSummaryFull, group = c("total", "moving"),

+ what = c("avgSpeed", "distance", "duration", "avgHeartRate"))

5.3. Times in zones

A common way to summarise and characterise a session is to calculate how much time was
spent exercising in certain zones, e.g., heart rate zones.

The zones() method for sessions returns an object of class “trackeRdataZones” for which
methods changeUnits() and plot() are provided. The user can specify the variables, such
as heart rate and speed, and their respective zones via the arguments what and breaks,
respectively. Figure 7 shows a graphical representation of the zones summary, making it easier
to see that more (relative) time was spent training with high speed (> 4m/s) in sessions 3
and 4 than in sessions 1 and 2. The following code chunk illustrates three equivalent ways to
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Figure 6: Selected session summaries for all 27 sessions.

specify the zones for a single variable: 1) in the standard way through arguments what and
breaks 2) if breaks is a named list, argument what can be left unspecified and 3) if only a
single variable is to be evaluated, breaks can also be a vector.

R> runZones <- zones(runs[1:4], what = "speed",

+ breaks = list(speed = c(0, 2:6, 12.5)))

R> runZones <- zones(runs[1:4], breaks = list(speed = c(0, 2:6, 12.5)))

R> runZones <- zones(runs[1:4], what = "speed", breaks = c(0, 2:6, 12.5))

R> plot(runZones)

5.4. Quantifying work capacity

The critical power model (Monod and Scherrer 1965) describes the relationship between the
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power output P and the time te to exhaustion at that power output

P = (W ′

0/te) + CP (1)

in terms of two parameters W ′

0 and CP. The critical power (CP) is defined by Monod and
Scherrer (1965) as “the maximum rate (of work) that [can be kept] up for a very long time
without fatigue.” Skiba et al. (2012) describe CP as“a power output that could theoretically be
maintained indefinitely on the basis of principally ’aerobic’ metabolism.” W ′ (read W prime)
represents a finite work capacity above CP. Skiba et al. (2012) assume that W ′ gets depleted
during exercise with a power output above CP but also replenished during exercise with a
power output of or below CP. We denote as W ′ the general concept of work capacity above
CP, and W ′(t) is the state of W ′ at time t. The latter is also sometimes referred to as
W ′ balance at time t. Additionally, the initial state of W ′ at the start of an exercise t = t0 is
W ′

0 = W ′(t0), which is one of the parameters in the critical power model (Equation 1). Total
depletion of W ′

0 results in the inability to produce a power output above CP. Thus, knowledge
of the current state W ′(t), i.e., how much of that finite work capacity W ′

0 is left at time t, is
important to an athlete, particularly in a race.

While this concept is most commonly applied to cycling, where the power output is routinely
measured, Skiba et al. (2012) suggest that it can also be applied to running, substituting power
and critical power by speed and critical speed, respectively. For running, the model postulates
that each runner has a finite capacity in terms of distance covered above the critical speed.
Depending on how much the runner exceeds this critical speed, the finite capacity W ′

0 is being
exhausted in shorter times. Below we describe the models for depletion and replenishment of
work capacity and how they are combined in trackeR.

Depletion of work capacity

Assuming constant power for periods of exertion above CP, Skiba, Fulford, Clarke, Vanhatalo,
and Jones (2015) assume that W ′ is depleted at a rate directly proportional to the difference
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between the power output and CP

d

dt
W ′(t) = −(P − CP ) . (2)

Solving Equation 2 for W ′(t) gives

W ′(t) = −(P − CP )t+D (3)

where D ∈ R is constant over t.

Suppose that the exercise over time t0 = 0 to tn = T can be split into n intervals with
breakpoints t0, t1, . . . , tn such that the power output within each interval is constant, that is
P (t) = Pi for t ∈ [ti−1, ti), i ∈ {1, . . . , n}. Then, using Equation 3, the change in W ′(t) over
the interval can be expressed as

W ′(ti)−W ′(ti−1) = −(Pi − CP )(ti − ti−1) . (4)

Replenishing of work capacity

Skiba et al. (2015) assume that the periods with a power output at or below CP are periods
of recovery during which W ′ is replenished with a rate that depends on the difference between
CP and the power output, and the amount of W ′

0 remaining, as follows:

d

dt
W ′(t) =

(

1−
W ′(t)

W ′

0

)

(CP − P ) . (5)

Equation 5 assumes that recovery slows down as W ′(t) approaches the initial capacity W ′

0.
Employing the substitution rule for integrals while solving Equation 5 and reexpressing in
terms of W ′(ti−1) (see Appendix A for details) gives

W ′(ti) = W ′

0 −
(

W ′

0 −W ′(ti−1)
)

exp

(

Pi − CP

W ′

0

(ti − ti−1)

)

. (6)

Since W ′(ti−1) is the amount of W ′

0 remaining at the start of the interval [ti−1, ti),
W ′

0 −W ′(ti−1) is the amount of W ′

0 which has been depleted prior to ti−1 and not yet been
replenished. Skiba et al. (2012) refer to this as W ′ expended. Skiba et al. (2015) describe the
replenishing of W ′ indirectly by describing how W ′ expended is reduced over the course of
such a recovery interval. The exponential decay factor used in Equation 6 here is the same
as their Equation 4 with only different notation. Skiba et al. (2015) use t to describe the
length of the interval, DCP = CP − Pi for the difference between critical power and power
output, and W ′

exp for the amount of W ′ previously expended. For Pi < CP , as is required for
replenishment, −DCP and Pi − CP are negative and thus the exponential factor is smaller
than 1, leading to an exponential decay as described.

Skiba et al. (2012) also assume an exponential decay of previously expended W ′ to describe
replenishing W ′, albeit with a different decay factor. Instead of (Pi − CP )/W ′

0, they use
1/τW ′ . The relationship between the time constant of replenishing τW ′ and the difference
between critical power and recovery power P̄ is estimated based on experimental data as

τW ′ = 546 exp
(

−0.01(CP − P̄ )
)

+ 316
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with recovery power P̄ estimated by the mean of all power outputs below CP.

Using Equation 6, i.e., the formulation of Skiba et al. (2015), the change in W ′ over the
corresponding interval [ti−1, ti) can be described through

W ′(ti)−W ′(ti−1) = (W ′

0 −W ′(ti−1))

(

1− exp

(

Pi − CP

W ′

0

∆i

))

. (7)

Work capacity at time tj

Equation 4 describes the depletion of W ′ (when Pi > CP ) and Equation 7 describes replen-
ishment of W ′ (when Pi ≤ CP ) over an interval [ti−1, ti). These two aspects can be combined
to describe the change over the interval as

W ′(ti)−W ′(ti−1) = − (Pi − CP )∆iI(Pi > CP )+

(W ′

0 −W ′(ti−1))

(

1− exp

(

Pi − CP

W ′

0

∆i

))

(1− I(Pi > CP )) .

The amount of W ′ left at time point tj , j ∈ {1, . . . , n}, can thus be described through the
initial amount W ′

0 and the changes happening in the j intervals of constant power previous
to tj :

W ′(tj) = W ′

0 +

j
∑

i=1

(W ′(ti)−W ′(ti−1))

= W ′

0 −

j
∑

i=1

(Pi − CP )∆iI(Pi > CP )+

j
∑

i=1

(W ′

0 −W ′(ti−1))

(

1− exp

(

Pi − CP

W ′

0

∆i

))

(1− I(Pi > CP )) . (8)

W ′ expended at time tj is then W ′

0 −W ′(tj).

Function Wprime() can be used to calculate W ′ expended by setting argument quantity

to "expended". If quantity is set to "balance", Wprime() calculates the current state
W ′(t) (Equation 8). Wprime() contains implementations for Skiba et al. (2012) and Skiba
et al. (2015), which can be selected via the version argument. For example, session 11 of
the example data is an interval training with a warm-up and cool-down phase. Assuming a
critical speed of 4 meters per second, the following code chunk produces Figure 8, which shows
W ′ expended, based on the specification of Skiba et al. (2012), along with the corresponding
speed profile.

R> wexp <- Wprime(runs, session = 11, quantity = "expended",

+ cp = 4, version = "2012")

R> plot(wexp, scaled = TRUE)

During the warm-up phase speed rarely exceeds 4 meters per second andW ′ expended remains
low. Over the course of the interval training, W ′ expended rises during the high-intensity
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Figure 8: W ′ expended in session 11.

phases and drops during the recovery phases. In the last part of the session, speeds are
mostly below 4 meters per second and W ′ expended drops again.

5.5. Distribution and concentration profiles

Kosmidis and Passfield (2015) introduce the concept of distribution profiles for which the
trackeR package provides an implementation. These profiles are motivated by the need to
compare sessions and use information on such variables as heart rate or speed during a session
for further modelling.

For a session lasting tn seconds, the distribution profile is defined as the curve {v,Π(v)|v ≥ 0}
where

Π(v) =

∫ tn

0

I(v(t) > v)dt .

The function Π(v) is monotone decreasing and describes the time spent exercising above a
threshold v for a variable V under consideration (e.g., heart rate or speed).

On the basis of observations v0, . . . , vn for V , at respective time points t0, . . . , tn, the observed
version of Π(v) can be calculated as

P (v) =
n
∑

i=1

(ti − ti−1)I(vi > v) .

This can subsequently be smoothed respecting the positivity and monotonicity of Π(v), e.g.,
via a shape constraint additive model with Poisson responses (Pya and Wood 2015).

The concentration profile is defined in Kosmidis and Passfield (2015) as the negative derivative
of a distribution profile and is suitable for revealing concentrations of time around certain
values of the variable under consideration.
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Figure 9: Distribution profiles for sessions 1–4.

Distribution profiles can be calculated using the distributionProfile() function which re-
turns an object of class “distrProfile”. Concentration profiles can be derived from distribu-
tion profiles using concentrationProfile(), which returns an object of class “conProfile”.
Table 2 includes an overview of constructor functions and available methods for distribution
and concentration profiles.

By default, distribution profiles are calculated for speed and heart rate on grids covering the
ranges of [0, 12.5] meters per second and [0, 250] beats per minute, respectively. The following
code chunk illustrates the use of distributionProfile() and shows how users can specify
the variables for which to calculate profiles and the respective grids.

R> dProfile <- distributionProfile(runs, session = 1:4,

+ what = c("speed", "heart.rate"),

+ grid = list(speed = seq(0, 12.5, by = 0.05), heart.rate = seq(0, 250)))

R> plot(dProfile, multiple = TRUE)

The multiple argument of the plot() method determines whether to plot the profiles in
separate panels (FALSE) or overlay them in a common panel (TRUE), as in Figure 9. The
different session lengths are clearly visible in the height of the curves at 0. Amongst the
distribution profiles for speed, the descent of the profile for session 3 is slower than for the
other sessions. This difference is most apparent in the concentration profiles, which are shown
in Figure 10 and are produced by the following code chunk.

R> cProfile <- concentrationProfile(dProfile, what = "speed")

R> plot(cProfile, multiple = TRUE)

The profile for session 3 has a mode at around 3.5 meters per second and another one at
5 meters per second, showing that this session involved training at a combination of low and
high speeds.
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Figure 10: Concentration profiles for sessions 1–4.

6. Handling units of measurement

Data objects of class“trackeRdata”and all objects derived from these (“trackeRdataSummary”,
“trackeRdataZones”, “trackeRWprime”, “distrProfile”, and “conProfile”) carry an at-
tribute with the relevant units of measurement. The getUnits() method returns the units
of measurement for each variable and the changeUnits() method can be used to change one
or more variables from one set of units to another. The following code chunk displays the
current units of run, changes the unit for speed to miles per hour, and displays the changed
units.

R> getUnits(run)

variable unit

1 latitude degree

2 longitude degree

3 altitude m

4 distance m

5 heart.rate bpm

6 speed m_per_s

7 cadence steps_per_min

8 power W

9 pace min_per_km

10 duration s

R> runTr2 <- changeUnits(run, variable = "speed", unit = "mi_per_h")

R> getUnits(runTr2)
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Measurement Unit(s)

latitude degrees (degree, default)
longitude degrees (degree, default)
altitude meters (m, default), kilometres (km), miles (mi), feet (ft)
distance meters (m, default), kilometres (km), miles (mi), feet (ft)
speed meters per second (m_per_s, default), kilometres per hour (km_per_h),

feet per minute (ft_per_min), feet per second (ft_per_s), miles per
hour (mi_per_h)

cadence steps per minute (steps_per_min, default for running), revolutions per
minute (rev_per_min, default for cycling)

power Watts (W, default), kilowatts (kW)
heart rate beats per minute (bpm, default)
pace minutes per kilometre (min_per_km, default), minutes per

mile (min_per_mi), seconds per meter (s_per_m)
duration seconds (s), minutes (min), hours (h) – default is the largest possible unit

for which the duration is larger than 1

Table 3: Supported units of measurement.

variable unit

1 latitude degree

2 longitude degree

3 altitude m

4 distance m

5 heart.rate bpm

6 speed mi_per_h

7 cadence steps_per_min

8 power W

9 pace min_per_km

10 duration s

Table 3 shows the variables and the corresponding units that are currently supported in
trackeR.

If objects with different units are c()ombined in one object, then the units of the first session
are applied to all other sessions. Furthermore, the changeUnits() method uses name match-
ing to figure out which conversion needs to be done. This allows the user to easily add support
for converting from unitOld to unitNew by authoring a function named unitOld2unitNew.

If we wish to report the speed summaries for session 1 in runSummary in feet per hour (not
currently supported) instead of meters per second, we need to simply provide the appropriately
named conversion function as illustrated below. Note that the conversion applies to all speed
summaries, i.e., to “average speed” and “average speed moving”.

R> m_per_s2ft_per_h <- function(x) x * 3937/1200 * 3600

R> changeUnits(runSummary, variable = "speed", unit = "ft_per_h")

*** Session 1 ***
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Variable Unit Lower threshold Upper threshold

latitude degrees -90 90
longitude degrees -180 180
altitude meter -500 9000
distance meter 0 ∞
heart rate beats per minute 0 250
speed meters per second 0 12.5 (100)
cadence steps (revolutions) per minute 0 ∞
power Watts 0 ∞
pace minutes per kilometre 0 ∞
duration seconds 0 ∞

Table 4: Default thresholds for running data, values in parentheses apply to cycling data.

Session times: 2013-06-01 17:32:15 - 2013-06-01 18:37:56

Distance: 14130.7 m

Duration: 1.09 hours

Moving time: 1.07 hours

Average speed: 42349.08 ft_per_h

Average speed moving: 43350.06 ft_per_h

Average pace (per 1 km): 4:38 min:sec

Average pace moving (per 1 km): 4:32 min:sec

Average cadence: 88.66 steps_per_min

Average cadence moving: 88.87 steps_per_min

Average power: NA W

Average power moving: NA W

Average heart rate: 141.11 bpm

Average heart rate moving: 141.13 bpm

Average heart rate resting: 136.76 bpm

Work to rest ratio: 42.31

Moving threshold: 11811 ft_per_h

7. Thresholding and smoothing

There are instances where the data include artefacts due to inaccuracies in the GPS measure-
ments. These can be handled with the threshold()method for objects of class“trackeRdata”,
which replaces values outside the specified thresholds with NA. The variables and the (lower
and upper) thresholds which should be applied for each variable can be specified through the
arguments variable, lower, and upper, respectively. An example is given in ?threshold.
The default thresholds are listed in Table 4 and, if necessary, are converted to the units of
measurement used for the “trackeRdata” object.

The other option for data handling is the smoother()method for“trackeRdata”objects. This
applies a summarising function, such as the mean or median, over a rolling window. Both
operations threshold() and smoother() are used in the plot() method for “trackeRdata”
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objects. The default settings for plot() are to apply the thresholds specified in Table 4 but
not to smooth the data. The top left panel in Figure 11 gives an example where no thresholds
are applied and the top right panel uses default settings. The spike to over 20 meters per
second in the top left panel is clearly an error in the data; the current world record for 100
meters (by Usain Bolt, August 16, 2009) is 9.58 seconds which translates to an average speed
of 10.44 meters per second. The bottom panels show the effect of first applying the default
thresholds and then smoothing the data through a rolling median with a window width of
20 observations, either done within the plot() method (bottom left) or explicitly via the
threshold() and smoother() methods (bottom right). The following code chunk produces
the four plots in Figure 11.

R> plot(runs, session = 4, what = "speed", threshold = FALSE)

R> plot(runs, session = 4, what = "speed")

R> plot(runs, session = 4, what = "speed", smooth = TRUE, fun = "median",

+ width = 20)

R> run4 <- threshold(runs[4])

R> run4S <- smoother(run4, what = "speed", fun = "median", width = 20)

R> plot(run4S, what = "speed", smooth = FALSE)

The method smoother() is also available for distribution and concentration profiles. Smooth-
ing a distribution profile requires a smoothing technique which respects the positivity and
monotonicity of the distribution profile. This can be achieved by fitting a shape constrained
additive model with Poisson responses as implemented in the scam package (Pya 2015). When
smoothing concentration profiles, the raw profiles are transformed to distribution profiles
which are subsequently smoothed preserving the positivity and monotonicity. The smooth
concentration profiles are then derived from the smoothed distribution profiles. The plot()

methods for “distrProfile” and “conProfile” smooth the profiles prior to plotting by de-
fault.

8. Case study

The example data set included in the package contains 27 sessions of a single male runner in
June 2013. A visualisation of scalar summaries for the sessions can be found in Figure 6. The
distance covered in those sessions ranges from 2.79 km to 22.35 km, and most sessions were
spent moving almost the entire time.

The code chunk below loads the data, applies thresholds, and calculates the smoothed dis-
tribution profiles for the 27 sessions. The corresponding concentration profiles are shown in
Figure 12.

R> library("trackeR")

R> data("runs", package = "trackeR")

R> runsT <- threshold(runs)

R> dpRuns <- distributionProfile(runsT, what = "speed")

R> dpRunsS <- smoother(dpRuns)

R> cpRuns <- concentrationProfile(dpRunsS)
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Figure 11: Speed profile of session 4 without thresholding (top left), with the default set-
tings (top right), and with default thresholds as well as smoothing through a rolling median
over a window of 20 observations done within the plot function (bottom left) and sepa-
rately (bottom right).

The majority of the profiles for speed concentrate around 4 meters per second. However, the
curves differ in their shape (unimodal or multimodal), height, and location (revealing concen-
trations at higher or lower speeds). Functional PCA (e.g., Ramsay and Silverman 2005) can
be used to explain those differences ensuring that the profiles are treated directly as functions.
trackeR contains a convenience function funPCA() which converts concentration/distribution
profiles to the required functional data format and performs a functional PCA. trackeR can
also be viewed as a stepping stone to further analysis of tracking data with other R packages.
For example, it contains a conversion function, profile2fd(), that transforms concentration
and distribution profiles to class “fd” so that users have direct access to the facilities of the
fda package (Ramsay, Wickham, Graves, and Hooker 2014) for functional data analysis.

The following code chunk shows the conversion to the required functional data format and
the fitting of a functional PCA in separate steps. The PCA has four components and the
share of variance is displayed in the last step.

R> library("fda")

R> cpFd <- profile2fd(cpRuns, what = "speed")

R> sppca <- pca.fd(cpFd, nharm = 4)

R> varprop <- round(sppca$varprop * 100); names(varprop) <- 1:4
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Figure 12: Smoothed speed concentration profiles for all 27 sessions.

R> varprop

1 2 3 4

66 25 6 2

The first two harmonics capture 91% of the variation between curves. Since further harmonics
capture considerably less variation, only the first two are chosen for further inspection.

Figure 13 shows the mean function (solid line) and the variation captured in the two harmonics
(between the dashed and dotted lines). The first harmonic (top panel) illustrates that the
most important characteristic of the concentration profiles is the relative value, which is
closely related to the overall session duration. The left panel of Figure 14 shows the score on
the first harmonic versus “duration moving” which is calculated as part of the scalar session
summaries. The second harmonic in the bottom panel of Figure 13 shows variation along the
speed thresholds in the centre of the curve. This variation can be explained well by the scalar
measure “average speed moving” as shown in the right panel of Figure 14.

The concentration profiles and a functional PCA thus indicate that the two scalar summaries
“duration moving”and“average speed moving”provide a good summary of the speed informa-
tion in the sessions and can be used, for example, in order to incorporate speed as explanatory
information in regression analyses.
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A. Replenishment of W ′

Assuming that power is constant, the solution of the differential equation describing the rate
of replenishment in Equation 5 with respect to W ′(t) gives
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Hence, W ′(ti) can be expressed in terms of W ′(ti−1) as
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