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1 Introduction

While working on an evaluation of drug treatment programs and writing up our methodology that
appeared in McCaffrey et al. (2004), we developed several R scripts and functions throughout the
experimentation. The twang package is the collection of functions that we found most useful. In
fact, these are the functions that we now regularly use in our work. Since many of our colleagues
at RAND have found them useful, we have made the package more generally available.

There are now numerous propensity scoring methods in the literature. They differ in how
they estimate the propensity score (e.g. logistic regression, CART), the target estimand (e.g.
treatment effect on the treated, population treatment effect), and how they utilize the resulting
estimated propensity scores (e.g. stratification, matching, weighting). We originally developed
the twang package with a particular process in mind, generalized boosted regression to estimate
the propensity scores and weighting of the comparison cases to estimate a treatment effect on the
treated. The main workhorse of twang is the ps() function that implements this. However, the
framework of the package is flexible enough to allow the user to use propensity score estimates
from other methods and implement new stop.method objects to assess the quality of balance
between the treatment and control groups. The same set of functions are also useful for other
tasks such as non-response weighting, discussed in section 4.

The propensity score is the probability that a particular case would be assigned or exposed
to a treatment condition. Rosenbaum & Rubin (1983) showed that knowing the propensity score
is sufficient to separate the effect of a treatment on an outcome from confounding factors that
influence both treatment assignment and outcomes, provide the necessary conditions hold. The
propensity score has the balancing property that given the propensity score the distribution of
features for the treatment cases is the same as that for the control cases. While the treatment
selection probabilities are generally not known, good estimates of them can be effective at remov-
ing confounding from treatment effect estimates. This package aims to compute good estimates
of the propensity scores from the data, check their quality by assessing whether or not they have
the balancing properties that we expect in theory, and use them in computing treatment effect
estimates.

2 An example to start

If you have not already done so, install twang by typing install.packages("twang"). twang re-
lies on other R packages, especially gbm and survey. You may have to run install.packages()

1



for these as well if they are not already installed. You will only need to do this step once. In
the future running update.packages() regularly will ensure that you have the latest versions
of the packages, including bug fixes and new features.

To start using twang, first load the package. You will have to do this step once for each R
session that you run.

> library(twang)

Loading required package: gbm
Loading required package: survival
Loading required package: splines
Loading required package: lattice
Loading required package: mgcv
This is mgcv 1.3-13
Loaded gbm 1.5-5
Loading required package: survey
Loading required package: xtable
Loading required package: mlmRev
Loading required package: lme4
Loading required package: Matrix
Loading required package: Matrix

To demonstrate the package we utilize data from Lalonde’s National Supported Work Demon-
stration analysis (Lalonde 1986, Dehejia & Wahba 1999, http://www.columbia.edu/~rd247/
nswdata.html). This dataset is provided with the twang package.

> data(lalonde)

R can read data from many other sources. The manual “R Data Import/Export,” available
at http://cran.r-project.org/doc/manuals/R-data.pdf, describes that process in detail.

For the lalonde dataset, the variable treat is the 0/1 treatment indicator, 1 indicates“treat-
ment”by being part of the National Supported Work Demonstration and 0 indicates“comparison”
cases drawn from the Current Population Survey. We wish to adjust for eight other covariates:
age, education, black, Hispanic, having no degree, married, earnings in 1974 (pretreatment), and
earnings in 1975 (pretreatment). Note that we specify no outcome variables at this time. The
ps() function is the primary method in twang for estimating propensity scores. This step is
computationally intensive and can take a few minutes.

> par(mfrow = c(1, 2))

> ps.lalonde <- ps(treat ~ age + educ + black +

+ hispan + nodegree + married + re74 + re75,

+ data = lalonde, plots = "optimize", stop.method = stop.methods[c("es.stat.mean",

+ "ks.stat.max")], n.trees = 2000, interaction.depth = 2,

+ shrinkage = 0.01, perm.test.iters = 0, verbose = FALSE)

The arguments to ps() require some discussion. The first argument specifies a formula
indicating that treat is the 0/1 treatment indicator and that the propensity score model should
predict treat from the eight covariates listed there separated by “+”. The “+” does not mean
that these variables are being added together nor does it mean that model is linear. This is
just R’s notation for variables in the model. There is no need to specify interaction terms in the
formula. There is also no need, and can be counterproductive, to create indicator variables to
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Figure 1: Optimization of es.stat.mean and ks.stat.max. The horizontal axes indicate the
number of iterations and the vertical axes indicate the measure of imbalance between the two
groups. For es.stat.mean the measure is the average effect size difference between the two
groups and for ks.stat.max the measure is the largest of the KS statistics

represent categorical covariates (aka “dummy code”), provided the categorical variable is stored
as a factor (see help(factor) for more details).

The next argument, data, indicates the dataset.
The plots controls the diagnostic plots that the ps function can create. They are described

in more detail later. For now plots="none" skips the plots, but they can be created later using
the plot() method. If the call to ps() includes an argument pdf.plots=TRUE then all the plots
are written to a pdf file in the current working directory (use getwd() to learn what your working
directory is and setwd() to set it). The default is pdf.plots=FALSE

n.trees, interaction.depth, and shrinkage are parameters for the gbm model that ps()
computes and stores. The resulting gbm object describes a family of candidate propensity score
models indexed by the number of gbm iterations from one to n.trees.

The stop.method argument takes a stop.method object which contains a set of rules and
measures for assessing the quality of the balance between the treatment and comparison groups.
The ps function selects the optimal number of gbm iterations to minimize the differences between
the treatment and control groups as measured by the rules of the given stop.method object.
Figure 1 illustrates this process. For each panel, the number of gbm iterations is plotted on
the horizontal axis plots the measure of balance is plotted on the vertical axis. Each iteration
adds model complexity to the propensity score model giving it greater modeling flexibility. The
increased flexibility improves the balance of the two groups up to a certain point at which
additional iterations offer no improvement or actually make the balance worse. In this example,
iterating gbm for 946 iterations minimized the average effect size difference and 946 iterations
minimized the largest of the eight Kolmogorov-Smirnov (KS) statistics computed for the eight
covariates. n.trees is the maximum number of iterations that ps() will run and it will issue
a warning if the estimated optimal number of iterations is too close to the bound. Increase
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n.trees if this warning appears.
The gbm package has various tools for exploring the relationship between the covariates and

the treatment assignment indicator if these are of interest. summary() computes the relative
influence of each variable for estimating the probability of treatment assignment. The gbm
estimates depend on the number of iterations, which is specified by the n.trees argument in the
summary method for gbm. In this example, we choose the number of iterations to be the optimal
number for minimizing the maximum KS statistics. This value can be found in the n.trees
elementof the ks.stat.max element of the desc element of the ps object ps.lalonde. Figure 2
shows the barchart of the relative influence if plot=TRUE.

> summary(ps.lalonde$gbm.obj, n.trees = ps.lalonde$desc$ks.stat.max$n.trees,

+ plot = FALSE)

var rel.inf
1 black 46.9866311
2 age 21.3639461
3 re74 16.9928215
4 re75 5.0567355
5 educ 4.5293987
6 married 3.8981933
7 nodegree 0.6554839
8 hispan 0.5167900

2.1 Assessing “balance” using balance tables

Having estimated the propensity scores, bal.table produces a table that shows how well the
resulting propensity score weights balance the treatment and comparison groups.

> lalonde.balance <- bal.table(ps.lalonde)

> lalonde.balance

$unw
tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

age 25.816 7.155 28.030 10.787 -0.309 -2.994 0.003 0.158 0.003
educ 10.346 2.011 10.235 2.855 0.055 0.547 0.584 0.111 0.075
black 0.843 0.365 0.203 0.403 1.757 19.371 0.000 0.640 0.000
hispan 0.059 0.237 0.142 0.350 -0.349 -3.413 0.001 0.083 0.319
nodegree 0.708 0.456 0.597 0.491 0.244 2.716 0.007 0.111 0.075
married 0.189 0.393 0.513 0.500 -0.824 -8.607 0.000 0.324 0.000
re74 2095.574 4886.620 5619.237 6788.751 -0.721 -7.254 0.000 0.447 0.000
re75 1532.055 3219.251 2466.484 3291.996 -0.290 -3.282 0.001 0.288 0.000

$es.stat.mean
tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

age 25.816 7.155 25.787 7.737 0.004 0.030 0.976 0.088 0.983
educ 10.346 2.011 10.524 2.238 -0.089 -0.600 0.549 0.084 0.989
black 0.843 0.365 0.843 0.364 0.000 0.002 0.998 0.000 1.000
hispan 0.059 0.237 0.046 0.210 0.056 0.634 0.527 0.013 1.000
nodegree 0.708 0.456 0.625 0.485 0.183 0.919 0.359 0.084 0.989
married 0.189 0.393 0.192 0.395 -0.008 -0.061 0.951 0.003 1.000
re74 2095.574 4886.620 1800.480 4253.284 0.060 0.527 0.598 0.054 1.000
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Figure 2: Relative influence of the covariates on the estimated propensity score
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re75 1532.055 3219.251 1349.576 2795.808 0.057 0.461 0.645 0.072 0.998

$ks.stat.max
tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

age 25.816 7.155 25.787 7.737 0.004 0.030 0.976 0.088 0.983
educ 10.346 2.011 10.524 2.238 -0.089 -0.600 0.549 0.084 0.989
black 0.843 0.365 0.843 0.364 0.000 0.002 0.998 0.000 1.000
hispan 0.059 0.237 0.046 0.210 0.056 0.634 0.527 0.013 1.000
nodegree 0.708 0.456 0.625 0.485 0.183 0.919 0.359 0.084 0.989
married 0.189 0.393 0.192 0.395 -0.008 -0.061 0.951 0.003 1.000
re74 2095.574 4886.620 1800.480 4253.284 0.060 0.527 0.598 0.054 1.000
re75 1532.055 3219.251 1349.576 2795.808 0.057 0.461 0.645 0.072 0.998

bal.table() returns a lot of information, not all of which is needed for all analyses. The
returned component is a list with named components, one for an unweighted analysis (named
unw) and one for each stop.method specified, here es.stat.mean and ks.stat.max. McCaffrey
et al (2004) essentially used es.stat.mean for the analyses, but our more recent work has been
utilizing ks.stat.max. See section XXX for a more detailed description of these choices.

The table contains the following items

tx.mn, ct.mn The treatment means and the propensity score weighted control means for each
of the variables. The unweighted table (unw) shows the unweighted means

tx.sd, ct.sd The treatment standard deviations and the propensity score weighted control stan-
dard deviations for each of the variables. The unweighted table (unw) shows the unweighted
standard deviations

std.eff.sz The standardized effect size, defined as the treatment group mean minus the compari-
son group mean divided by the treatment group standard deviation (this value is sometimes
referred to as “standardized bias” when people discuss propensity scores)

stat, p Depending on whether the variable is continuous or categorical, stat is a t-statistic or
a χ2 statistic. p is the associated p-value

ks, ks.pval The Kolmogorov-Smirnov test statistic and its associated p-value. If in the call to
ps() perm.test.iters>0 then these p-values are Monte Carlo p-values. Otherwise they
are analytic approximations that are not necessarily accurate when there are ties. For
categorical variables this is just the χ2 test

Components of these tables are likely to be useful in reports and presentations demonstrat-
ing that indeed the two groups have been balanced. The xtable package aids in formatting
for LATEXand Word documents. Table 1 shows the results for ks.stat.max reformatted for a
LATEXdocument. For Word documents, paste LATEXdescription of the table into a Word docu-
ment, highlight it, Table->Convert->Text to Table, then under “Separate text at” insert “&” in
the Other: box. Additional formatting from there will finish it.

> library(xtable)

> pretty.tab <- lalonde.balance$ks.stat.max[, c("tx.mn",

+ "ct.mn", "ks")]

> pretty.tab <- cbind(pretty.tab, lalonde.balance$unw[,

+ "ct.mn"])

> names(pretty.tab) <- c("E(Y1|t=1)", "E(Y0|t=1)",

+ "KS", "E(Y0|t=0)")
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> xtable(pretty.tab, caption = "Balance of the treatment and comparison groups",

+ label = "tab:balance", digits = c(0, 2, 2,

+ 2, 2), align = c("l", "r", "r", "r", "r"))

E(Y1|t=1) E(Y0|t=1) KS E(Y0|t=0)
age 25.82 25.79 0.09 28.03
educ 10.35 10.52 0.08 10.23
black 0.84 0.84 0.00 0.20
hispan 0.06 0.05 0.01 0.14
nodegree 0.71 0.62 0.08 0.60
married 0.19 0.19 0.00 0.51
re74 2095.57 1800.48 0.05 5619.24
re75 1532.06 1349.58 0.07 2466.48

Table 1: Balance of the treatment and comparison groups

The summary() method for ps objects offers a compact summary of the sample sizes of the
groups and the balance measures

> summary(ps.lalonde)

type n.treat n.ctrl ess max.es
1 unw 185 429 429.00000 1.756775
11 es.stat.mean 185 429 28.09103 0.183351
12 ks.stat.max 185 429 28.09103 0.183351

mean.es max.ks max.ks.p mean.ks iter
1 0.56872589 0.6404460 NA 0.27024507 NA
11 0.05724476 0.0875748 NA 0.04970737 946
12 0.05724476 0.0875748 NA 0.04970737 946

In general, weighted means have greater sampling variance than unweighted means from a
sample of equal size. The effective sample size (ESS) of the weighted comparison group captures
this increase in variance as

ESS =

(∑
i∈C wi

)2∑
i∈C w2

i

. (1)

The ESS is approximately the number of observations from a simple random sample needed to
obtain an estimate with sampling variation equal to the sampling variation obtained with the
weighted comparison observations. Therefore, the ESS will give an estimate of the number of
comparison participants that are comparable to the treatment group. The ESS is an accurate
measure of the relative size of the variance of means when the weights are fixed or uncorrelated
with outcomes otherwise the ESS underestimates the effective sample size (Little & Vartivarian,
2004). It is unlikely to be the case with propensity score weights that the weights are uncorrelated
with outcomes. Hence the ESS might be an lower bound on the effective sample size, but it still
serves as a useful measure on the effective number of control cases used in estimating weighted
means.

The ess column in the summary results shows the ESS for the estimated propensity scores.
Note that although the original comparison group had 429 cases, the propensity score estimates
effectively utilize only 28.1 or 28.1 of the comparison cases, depending on the rules and measures
used to estimate the propensity scores. While this may seem like a large loss of sample size, this
indicates that many of the original cases were unlike the treatment cases and, hence, were not
useful for isolating the treatment effect.
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2.2 Graphical assessments of balance

The plot() method can generate useful diagnostic plots from the propensity score objects. Box-
plots comparing the estimated propensity score weights between the treatment and comparison
groups checks for overlap in the groups.

> par(mfrow = c(1, 2))

> plot(ps.lalonde, plots = "ps boxplot")

> par(mfrow = c(1, 1))
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P-values from independent tests in which the null hypothesis is true have a uniform distri-
bution. Therefore, a QQ plot comparing the quantiles of the observed p-values to the quantiles
of the uniform distribution inform us of how similar the propensity score weighting makes the
samples look like what we would expect from a randomized study. Setting plots="t pvalues"
generates such QQ plots.

> par(mfrow = c(1, 2))

> plot(ps.lalonde, plots = "t pvalues")

> par(mfrow = c(1, 1))

8



● ● ● ● ● ● ●

●

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

es.stat.mean

pretreatment covariates
red (unw), black (wt)

T
−

te
st

 p
−

va
lu

es

●

● ●
●

●

● ● ●

● ● ● ● ● ● ●

●

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ks.stat.max

pretreatment covariates
red (unw), black (wt)

T
−

te
st

 p
−

va
lu

es

●

● ●
●

●

● ● ●

Before weighting (closed circles), many variables have statistically significant differences be-
tween groups (i.e., with p-values near zero). After weighting (open circles) the p-values are above
the 45-degree line, which represents the cumulative distribution of a uniform variable on [0,1].
This indicates that the p-values are even larger than would be expected in a randomized study.
plot() can create similar figures for KS statistic p-values by setting plots="ks pvalues".

> par(mfrow = c(1, 2))

> plot(ps.lalonde, plots = "spaghetti")

> par(mfrow = c(1, 1))

0.
0

0.
5

1.
0

1.
5

es.stat.mean

A
bs

ol
ut

e 
S

td
 D

iff
er

en
ce

Unweighted Weighted

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●
●

●
●

●

0.
0

0.
5

1.
0

1.
5

ks.stat.max

A
bs

ol
ut

e 
S

td
 D

iff
er

en
ce

Unweighted Weighted

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●
●

●
●

●

9



2.3 Analysis of outcomes

The survey package is useful for performing the outcomes analyses using propensity score
weights. Its statistical methods properly account for the weights when computing standard
error estimates.

> library(survey)

The get.weights function extracts the propensity score weights from a ps object. Those
weights may then be used as case weights in a svydesign object.

> lalonde$w <- get.weights(ps.lalonde, type = "ATT",

+ stop.method = "ks.stat.max")

> design.ps <- svydesign(ids = ~1, weights = ~w,

+ data = lalonde)

The type argument to the get.weights function specifies whether the weights are for esti-
mating the treatment effect on the treated, computed as 1 for the treatment cases and p/(1− p)
for the comparison cases, or for estimating the treatment effect on the population, computed
as 1/p for the treatment cases and 1/(1 − p) for the comparison cases. The third argument to
get.weights selects which set of weights to utilize. If no stop.method is selected then it returns
the first set of weights.

The svydesign function from the survey package creates an object that stores the dataset
along with design information needed for analyses. See help(svydesign) for more details on
setting up svydesign objects.

The aim of the National Supported Work Demonstration analysis is to determine whether
the program was effective at increasing earnings in 1978. The propensity score adjusted test can
be computed with svyglm.

> glm1 <- svyglm(re78 ~ treat, design = design.ps)

> summary(glm1)

Call:
svyglm(re78 ~ treat, design = design.ps)

Survey design:
svydesign(ids = ~1, weights = ~w, data = lalonde)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5720.2 759.4 7.533 1.79e-13 ***
treat 628.9 953.9 0.659 0.51
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 49340405)

Number of Fisher Scoring iterations: 2

The analysis estimates an increase in earnings of $629 for those that participated in the
NSW compared with similarly situated people observed in the CPS. The effect, however, does
not appear to be statistically significant.
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Some authors have recommended utilizing both propensity score adjustment and additional
covariate adjustment to minimize mean square error or to obtain “doubly robust” estimates of
the treatment effect (Huppler-Hullsiek & Louis 2002, Bang & Robins 2005). These estimators
are consistent if either the propensity scores are estimated correctly or the regression model is
specified correctly. For example, note that the balance table for ks.stat.max made the two
groups more similar on nodegree, but still some differences remained, 70.8% of the treatment
group had no degree while 62.5% of the comparison group had no degree. While linear regression
is sensitive to model misspecification when the treatment and comparison groups are dissimilar,
the propensity score weighting has made them more similar, perhaps enough so that additional
modeling with covariates can adjust for any remaining differences. In addition to potential bias
reduction, the inclusion of additional covariates can reduce the standard error of the treatment
effect if some of the covariates are strongly related to the outcome.

> glm2 <- svyglm(re78 ~ treat + nodegree, design = design.ps)

> summary(glm2)

Call:
svyglm(re78 ~ treat + nodegree, design = design.ps)

Survey design:
svydesign(ids = ~1, weights = ~w, data = lalonde)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6890.9 1256.5 5.484 6.08e-08 ***
treat 785.6 980.3 0.801 0.423
nodegree -1874.5 1141.4 -1.642 0.101
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 48568844)

Number of Fisher Scoring iterations: 2

Adjusting for the remaining group difference in degree slightly increased the estimate of the
program’s effect to $786, but the difference is still not statistically significant. We can covariate
adjust for the other variables seeking additional bias and variance reduction, but that too in this
case has no effect on the estimated program effect.

> glm3 <- svyglm(re78 ~ treat + age + educ + black +

+ hispan + nodegree + married + re74 + re75,

+ design = design.ps)

> summary(glm3)

Call:
svyglm(re78 ~ treat + age + educ + black + hispan + nodegree +

married + re74 + re75, design = design.ps)

Survey design:
svydesign(ids = ~1, weights = ~w, data = lalonde)
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.914e+03 4.033e+03 -0.475 0.63530
treat 6.674e+02 9.320e+02 0.716 0.47419
age 4.257e+00 5.213e+01 0.082 0.93494
educ 7.101e+02 2.405e+02 2.953 0.00327 **
black -7.854e+02 9.577e+02 -0.820 0.41252
hispan 6.961e+02 1.642e+03 0.424 0.67178
nodegree 4.625e+02 1.504e+03 0.307 0.75861
married 5.215e+02 1.046e+03 0.498 0.61835
re74 4.487e-02 1.618e-01 0.277 0.78163
re75 1.566e-01 1.749e-01 0.895 0.37112
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 46719953)

Number of Fisher Scoring iterations: 2

2.4 Estimating the program effect using linear regression

The more traditional regression approach to estimating the program effect would fit a linear
model with a treatment indicator and linear terms for each of the covariates.

> glm4 <- lm(re78 ~ treat + age + educ + black +

+ hispan + nodegree + married + re74 + re75,

+ data = lalonde)

> summary(glm4)

Call:
lm(formula = re78 ~ treat + age + educ + black + hispan + nodegree +

married + re74 + re75, data = lalonde)

Residuals:
Min 1Q Median 3Q Max

-13595 -4894 -1662 3929 54570

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.651e+01 2.437e+03 0.027 0.9782
treat 1.548e+03 7.813e+02 1.982 0.0480 *
age 1.298e+01 3.249e+01 0.399 0.6897
educ 4.039e+02 1.589e+02 2.542 0.0113 *
black -1.241e+03 7.688e+02 -1.614 0.1071
hispan 4.989e+02 9.419e+02 0.530 0.5966
nodegree 2.598e+02 8.474e+02 0.307 0.7593
married 4.066e+02 6.955e+02 0.585 0.5590
re74 2.964e-01 5.827e-02 5.086 4.89e-07 ***
re75 2.315e-01 1.046e-01 2.213 0.0273 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 6948 on 604 degrees of freedom
Multiple R-Squared: 0.1478, Adjusted R-squared: 0.1351
F-statistic: 11.64 on 9 and 604 DF, p-value: < 2.2e-16

This model estimates a rather strong treatment effect, estimating a program effect of $1548
with a p-value=0.048. Several variations of this regression approach also estimate strong pro-
gram effects. For example using square root transforms on the earnings variables yields a p-
value=0.016. These estimates, however, are very sensitive to the model structure since the
treatment and comparison subjects differ greatly as seen in the unweighted balance comparison
($unw) from bal.table(ps.lalonde).

2.5 Propensity scores estimated from logistic regression

Propensity score analysis is intended to avoid these problems, but the quality of the balance and
the treatment effect estimates can be sensitive to the method used to estimate the propensity
scores. Consider estimating the propensity scores using logistic regression instead of ps().

> ps.logit <- glm(treat ~ age + educ + black + hispan +

+ nodegree + married + re74 + re75, data = lalonde,

+ family = binomial)

> lalonde$w.logit <- rep(1, nrow(lalonde))

> lalonde$w.logit[lalonde$treat == 0] <- exp(predict(ps.logit,

+ subset(lalonde, treat == 0)))

predict() for logistic regression model produces estimates on the log-odds scale by default.
Exponentiating those predictions for the comparison subjects gives the propensity score weights
p/(1−p). dx.wts() from the twang package diagnoses the balance for an arbitrary set of weights
producing a balance table.

> bal.logit <- dx.wts(lalonde$w.logit, data = lalonde,

+ vars = c("age", "educ", "black", "hispan",

+ "nodegree", "married", "re74", "re75"),

+ treat.var = "treat", perm.test.iters = 0)

> print(bal.logit)

type n.treat n.ctrl ess max.es mean.es
1 unw 185 429 429.00000 1.7567745 0.56872589
2 185 429 99.81539 0.1188496 0.03188410

max.ks mean.ks iter
1 0.6404460 0.27024507 NA
2 0.3078039 0.09302319 NA

For propensity score weights estimated with logistic regression, the largest KS statistic was
reduced from the unweighted sample’s largest KS of 0.64 to 0.31, still quite a large KS statistic.
Table 2 shows the details of the balance of the treatment and comparison groups. The means of
the two groups appear to be quite similar while the KS statistic shows substantial differences in
their distributions.
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> pretty.tab <- bal.table(bal.logit)[[2]][, c("tx.mn",

+ "ct.mn", "ks")]

> pretty.tab <- cbind(pretty.tab, bal.table(bal.logit)[[1]]$ct.mn)

> names(pretty.tab) <- c("E(Y1|t=1)", "E(Y0|t=1)",

+ "KS", "E(Y0|t=0)")

> xtable(pretty.tab, caption = "Logistic regression estimates of the propensity scores",

+ label = "tab:balancelogit", digits = c(0,

+ 2, 2, 2, 2), align = c("l", "r", "r",

+ "r", "r"))

E(Y1|t=1) E(Y0|t=1) KS E(Y0|t=0)
age 25.82 24.97 0.31 28.03
educ 10.35 10.40 0.04 10.23
black 0.84 0.84 0.00 0.20
hispan 0.06 0.06 0.00 0.14
nodegree 0.71 0.69 0.02 0.60
married 0.19 0.17 0.02 0.51
re74 2095.57 2106.05 0.23 5619.24
re75 1532.06 1496.54 0.13 2466.48

Table 2: Logistic regression estimates of the propensity scores

Table 3 compares the balancing quality of the propensity score weights directly with one
another.

n.treat ess max.es mean.es max.ks mean.ks
unw 185 429.00 1.76 0.57 0.64 0.27
logit 185 99.82 0.12 0.03 0.31 0.09
es.stat.mean 185 28.09 0.18 0.06 0.09 0.05
ks.stat.max 185 28.09 0.18 0.06 0.09 0.05

Table 3: Summary of the balancing properties of logistic regression and gbm

> design.logit <- svydesign(ids = ~1, weights = ~w.logit,

+ data = lalonde)

> glm6 <- svyglm(re78 ~ treat, design = design.logit)

> summary(glm6)

Call:
svyglm(re78 ~ treat, design = design.logit)

Survey design:
svydesign(ids = ~1, weights = ~w.logit, data = lalonde)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5135.1 588.9 8.719 <2e-16 ***
treat 1214.1 824.7 1.472 0.142
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 49598072)

Number of Fisher Scoring iterations: 2

The analysis estimates an increase in earnings of $1214 for those that participated in the
NSW compared with similarly situated people observed in the CPS. Table 4 compares all of the
treatment effect estimates

Treatment effect PS estimate Linear adjustment
$629 GBM, minimize KS none
$786 GBM, minimize KS nodegree
$667 GBM, minimize KS all

$1548 None all
$1214 Logistic regression none
$1237 Logistic regression all

Table 4: Treatment effect estimates by various methods

3 The details of twang

3.1 Propensity score weighting

Propensity score weighting Propensity score weighting (Rosenbaum 1987, Wooldridge 2002, Hi-
rano and Imbens 2001, McCaffrey et al. 2004) addresses this problem by first reweighting the
comparison cases so that the distribution of their features match the distribution of features
of the treatment cases. Let f(x|t = 1) be the distribution of features for the treatment cases
and f(x|t = 0) be the distribution of features for the comparison cases. If treatments were
randomized then we would expect these two distributions to be similar. When they differ we
will construct a weight, w(x), so that

f(x|t = 1) = w(x)f(x|t = 0). (2)

For example, if f(age=65, sex=F|t = 1) = 0.10 and f(age=65, sex=F|t = 1) = 0.05 (i.e. 10%
of the treatment cases and 5% of the comparison cases are 65 year old females) then we need
to give a weight of 2.0 to every 65 year old female in the comparison group so that they have
the same representation as in the treatment group. More generally, we can solve (2) for w(x)
and apply Bayes Theorem to the numerator and the denominator to give an expression for the
propensity score weight for comparison cases,

w(x) = K
f(t = 1|x)
f(t = 0|x)

= K
P (t = 1|x)

1 − P (t = 1|x)
, (3)

where K is a normalization constant that will cancel out in the outcomes analysis. Equation
(3) indicates that if we assign a weight to comparison case i equal to the odds that a case with
features xi would be exposed to the treatment, then the distribution of their features would
balance. Note that for comparison cases with features that are atypical of treatment cases, the
propensity score P (t = 1|x) would be near 0 and would produce a weight near 0. On the other
hand, comparison cases with features typical of the treatment cases would receive larger weights.
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3.2 Estimating the propensity score

In randomized studies P (t = 1|x) is known and fixed in the study design. In observational studies
the propensity score is unknown and must be estimated, but poor estimation of the propensity
scores can cause just as much of a problem for estimating treatment effects as poor regression
modeling of the outcome. Logistic regression is the common method for estimating propensity
scores, and can suffice for many problems. Logistic regression for propensity scores estimates
the log-odds of a case being in the treatment given x as

log
P (t = 1|x)

1 − P (t = 1|x)
= β′x (4)

Usually, β is selected to maximize the logistic log-likelihood

`β =
1
n

n∑
i=1

tiβ
′xi − log (1 + exp(β′xi)) (5)

Maximizing (5) provides the maximum likelihood estimates of β. However, in an attempt to
remove as much confounding as possible, observational studies often record data on a large
number of potential confounders, many of which can be correlated with one another. Standard
methods for fitting logistic regression models to such data with the iteratively reweighted least
squares algorithm can be statistically and numerically unstable. To improve the propensity score
estimates we might also wish to include non-linear effects and interactions in x. The inclusion
of such terms only increases the instability of the models.

One increasingly popular method for fitting models with numerous correlated variables is the
lasso (least absolute subset selection and shrinkage operator) introduced in statistics in Tibshirani
(1996). For logistic regression, lasso estimation replaces (5) with a version that penalizes the
absolute magnitude of the coefficients

`β =
1
n

n∑
i=1

tiβ
′xi − log (1 + exp(β′xi)) − λ

J∑
j=1

|βj | (6)

The second term on the right-hand side of the equation is the penalty term since it decreases the
overall of `β when there are coefficient that are large in absolute value. Setting λ = 0 returns the
standard (and potentially unstable) logistic regression estimates of β. Setting λ to be very large
essentially forces all of the βj to be equal to 0 (the penalty excludes β0). For a fixed value of λ the
estimated β̂ can have many coefficients exactly equal to 0, not just extremely small but precisely
0, and only the most powerful predictors of t will be non-zero. As a result the absolute penalty
operates as a variable selection penalty. In practice, if we have several predictors of t that are
highly correlated with each other, the lasso tends to include all of them in the model, shrink their
coefficients toward 0, and produce a predictive model that utilizes all of the information in the
covariates, producing a model with greater out-of-sample predictive performance than models
fit using variable subset selection methods.

Our aim is to include as covariates all piecewise constant functions of the potential con-
founders and their interactions. That is, in x we will include indicator functions for continu-
ous variables like I(age < 15), I(age < 16), . . . , I(age < 90), etc., for categorical variables like
I(sex = male), I(prior MI = TRUE), and interactions among them like I(age < 16)I(sex =
male)I(prior MI = TRUE). This collection of basis functions spans a plausible set of propensity
score functions, are computationally efficient, and are flat at the extremes of x reducing the
likelihood of propensity score estimates near 0 and 1 that can occur with linear basis functions
of x. Theoretically with the lasso we can estimate the model in (6), selecting a λ small enough
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so that it will eliminate most of the irrelevant terms and yield a sparse model with only the
most important main effects and interactions. Boosting (Friedman 2001, 2003, Ridgeway 1999)
effectively implements this strategy using a computationally efficient method that Efron et al.
(2004) showed is equivalent to optimizing (6). With boosting it is possible to maximize (6) for a
range of values of λ with no additional computational effort than for a specific value of λ. We use
boosted logistic regression as implemented in the generalized boosted modeling (gbm) package
in R (Ridgeway 2005).

3.3 Evaluating the propensity score weights

As with regression analyses, propensity score methods cannot adjust for unmeasured covariates
that are uncorrelated with the observed covariates. Nonetheless, the quality of the adjustment
for the observed covariates achieved by propensity score weighting is easy to evaluate. The
estimated propensity score weights should equalize the distributions of the cases’ features as in
(2). This implies that weighted statistics of the covariates of the comparison group should equal
the same statistics for the treatment group. For example, the weighted average of the age of
comparison cases should equal the average age of the treatment cases. To assess the quality of
the propensity score weights one could compare a variety of statistics such as means, medians,
variances, and Kolmogorov-Smirnov statistics for each covariate as well as interactions. The
twang package provides both the standardized effect sizes and KS statistics and p-values testing
for differences in the means and distributions of the covariates for analysts to use in assessing
balance. In addition, the package encodes decisions on how to assess the quality of the balance
in stop.method objects which determine how to select the gbm iterations and tune the weights.
There are three stop.method objects included with twang, described in more detail later, that
compare means, KS statistics, and within propensity score strata mean differences.

3.4 Analysis of outcomes

With propensity score analyses the final outcomes analysis is generally straightforward, while
the propensity score estimation may require complex modeling. Once we have propensity score
weights that equalize the distribution of features of treatment and control cases, we give each
treatment case a weight of 1 and each comparison case a weight wi = p(xi)/(1−p(xi)). We then
estimate the treatment effect estimate with a weighted regression model that contains only a
treatment indicator. No additional covariates are needed if the propensity score weights account
for differences in x.

A combination of propensity score weighting and covariate adjustment can be useful for
several reasons. First, the propensity scores may not have been able to completely balance all
of the covariates. The inclusion of these covariates in addition to the treatment indicator in
a weighted regression model may correct this if the imbalance is relatively small. Second, in
addition to exposure, the relationship between some of the covariates and the outcome may
also be of interest. Their inclusion can provide coefficients that can estimate the direction and
magnitude of the relationship. Third, as with randomized trials, stratifying on covariates that are
highly correlated with the outcome can improve the precision of estimates. Lastly, the inclusion
of covariates can make the treatment effect estimate more robust in the sense that if either the
propensity score model is correct or the regression model is correct then the treatment effect
estimator will be unbiased (Kuppler Hullsiek & Louis 2004).
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4 Non-response weights

The twang package was designed to estimate propensity score weights for estimating treatment
effects in observational or quasi-experimental studies. However, the package can be used in
other applications. For example, it can be used to generate and diagnose nonresponse weights
for survey nonresponse or study attrition. We now present an example that uses the tools in
twang. This example uses the subset of the US Sustaining Effects Study data distributed with
the HLM software (Bryk, Raudenbush, Congdon, 1996) and also available in the R package
mlmRev. The data include mathematics test scores for 1721 students in kindergarten to fourth
grade. They also include the students race (Black, Hispanic, or other), gender, an indicator
for whether or not the student had been retained in grade, the percent low income students at
the school, the school size, the percent of mobile student, the students’ grade-levels,student and
school IDs, and grades converted to year by centering. The study analysis plans to analyze growth
in math achievement from grade 1 to grade 4 using only students with complete data. However,
the student with complete data differ from other students and reduce the potential for bias
from excluding incomplete cases, the analysis plans to weight complete cases with nonresponse
weights.

Nonresponse weights equal the reciprocal of the probability of response and are applied only
to respondents. Let p denote the probability of response and and 1/p denote the nonresponse
weight. Using basic algebra we can rewrite the nonresponse weights:

1
p

= 1 +
1 − p

p
(7)

This formula shows that the weight has a component for respondent (which equals 1) and com-
ponent for the nonrespondents ((1− p)/p). The goal of nonresponse weighting is to develop the
weights so that the weighted respondents look like the entire sample – both the respondents and
nonrespondents. Since, the respondents already look like themselves, we must find good esti-
mates of the second component of the weight, (1− p)/p. We want to find weights that make the
respondents look like the nonrespondents. The ps() function finds weights that make the control
group like the the treatment group in terms of the distribution of covariates by estimating the
treatment on the treated weight. Hence if we call the nonrespondents the “treatment” group and
respondents the “control” group then ps() function can provide estimates of (1 − p)/p and the
diagnostic tools in twang can be used to diagnosis the weights. To obtain the final nonresponse
weight we just add 1 to the weights from ps().

Before we can generate nonresponse weights, we need to prepare the data using the following
commands.

First we read in the data

> library(mlmRev)

> data(egsingle)

Next we create the patterns of grades for which students have responses

> tmp <- sapply(split(egsingle, egsingle$childid),

+ function(x) {

+ paste(as.character(x$grade), collapse = "")

+ })

identify students with test scores for every grade from 1 to 4

> tmp <- data.frame(childid = names(tmp), gpatt = tmp,

+ resp = as.numeric((1:length(tmp)) %in% grep("1234",

+ as.character(tmp))))
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and merge this back to create a single data frame

> egsingle <- merge(egsingle, tmp)

Because nonresponse is a student-level variable rather than a student-by-year-level variable
we create one record per student.

> egsingle.one <- unique(egsingle[, -c(3:6)])

We also create a race variable

> egsingle.one$race <- as.factor(race <- ifelse(egsingle.one$black ==

+ 1, 1, ifelse(egsingle.one$hispanic == 1, 2,

+ 3)))

As discussed above, to use ps() to estimate nonresponse, we need to let nonrespondents
be the treatment group by modeling an indicator of nonresponse rather than an indicator of
response. We create this indicator and are set to estimate weights.

> egsingle.one$nresp <- 1 - egsingle.one$resp

> par(mfrow = c(1, 2))

> egsingle.ps <- ps(nresp ~ race + female + size +

+ lowinc + mobility, data = egsingle.one, plots = "optimize",

+ stop.method = stop.methods[c("es.stat.mean",

+ "ks.stat.max")], n.trees = 2500)

Fitting gbm model
Iter TrainDeviance ValidDeviance StepSize Improve

1 1.3849 nan 0.0100 0.0004
2 1.3841 nan 0.0100 0.0004
3 1.3832 nan 0.0100 0.0005
4 1.3820 nan 0.0100 0.0004
5 1.3811 nan 0.0100 0.0004
6 1.3800 nan 0.0100 0.0005
7 1.3793 nan 0.0100 0.0002
8 1.3784 nan 0.0100 0.0004
9 1.3776 nan 0.0100 0.0003
10 1.3769 nan 0.0100 0.0002
100 1.3266 nan 0.0100 0.0001
200 1.2992 nan 0.0100 -0.0000
300 1.2832 nan 0.0100 -0.0000
400 1.2709 nan 0.0100 -0.0001
500 1.2621 nan 0.0100 -0.0000
600 1.2550 nan 0.0100 -0.0001
700 1.2496 nan 0.0100 -0.0000
800 1.2451 nan 0.0100 -0.0002
900 1.2410 nan 0.0100 -0.0001
1000 1.2376 nan 0.0100 -0.0001
1100 1.2345 nan 0.0100 -0.0001
1200 1.2319 nan 0.0100 -0.0001
1300 1.2295 nan 0.0100 -0.0001
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1400 1.2273 nan 0.0100 -0.0001
1500 1.2253 nan 0.0100 -0.0000
1600 1.2234 nan 0.0100 -0.0001
1700 1.2215 nan 0.0100 -0.0001
1800 1.2199 nan 0.0100 -0.0000
1900 1.2183 nan 0.0100 -0.0001
2000 1.2171 nan 0.0100 -0.0001
2100 1.2159 nan 0.0100 -0.0001
2200 1.2149 nan 0.0100 -0.0000
2300 1.2136 nan 0.0100 -0.0001
2400 1.2125 nan 0.0100 -0.0001
2500 1.2114 nan 0.0100 -0.0001

Diagnosis of unweighted analysis
Optimizing with es.stat.mean stopping rule

Optimized at 1013
Diagnosis of es.stat.mean weights
Optimizing with ks.stat.max stopping rule

Optimized at 185
Diagnosis of ks.stat.max weights

The optimal number of iterations for gbm to minimize the maximum KS statistic is 2048 and
the optimal number of iterations for gbm to minimize the average effect size is . The weights
do an excellent job matching the distribution of the respondent group covariates to those of the
nonrespondents.

> pretty.tab <- bal.table(egsingle.ps)$ks.stat.max[,

+ c("tx.mn", "ct.mn", "std.eff.sz", "ks")]

> names(pretty.tab) <- c("E(Y1|t=1)", "E(Y0|t=1)",

+ "Std.Eff.", "KS")

> xtable(pretty.tab, caption = "Balance of the nonrespondents and respondents",

+ label = "tab:balance2", digits = c(0, 2, 2,

+ 2, 2), align = c("l", "r", "r", "r", "r"))

E(Y1|t=1) E(Y0|t=1) Std.Eff. KS
race:1 0.73 0.71 0.04 0.02
race:2 0.16 0.15 0.04 0.01
race:3 0.11 0.14 −0.10 0.03
female:Female 0.52 0.48 0.07 0.04
female:Male 0.48 0.52 −0.07 0.04
size 761.33 762.12 −0.00 0.04
lowinc 80.75 80.71 0.00 0.04
mobility 36.44 35.48 0.07 0.04

Table 5: Balance of the nonrespondents and respondents

The final step is to add 1 to the weights to get the final nonresponse weight and then add
the nonresponse weights to the respondent data so analyses can proceed.

> egsingle.one$wgt <- 1 + get.weights(egsingle.ps,

+ type = "ATT", stop.method = "ks.stat.max")
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Fitting gbm model
Iter TrainDeviance ValidDeviance StepSize Improve

1 1.3853 nan 0.0100 0.0002
2 1.3845 nan 0.0100 0.0004
3 1.3833 nan 0.0100 0.0004
4 1.3823 nan 0.0100 0.0005
5 1.3814 nan 0.0100 0.0004
6 1.3804 nan 0.0100 0.0004
7 1.3795 nan 0.0100 0.0003
8 1.3789 nan 0.0100 0.0002
9 1.3779 nan 0.0100 0.0005
10 1.3773 nan 0.0100 0.0003
100 1.3263 nan 0.0100 0.0001
200 1.2984 nan 0.0100 0.0000
300 1.2827 nan 0.0100 -0.0000
400 1.2711 nan 0.0100 -0.0002
500 1.2629 nan 0.0100 -0.0000
600 1.2562 nan 0.0100 -0.0001
700 1.2508 nan 0.0100 -0.0001
800 1.2463 nan 0.0100 -0.0001
900 1.2421 nan 0.0100 -0.0001
1000 1.2391 nan 0.0100 -0.0001
1100 1.2360 nan 0.0100 -0.0001
1200 1.2329 nan 0.0100 -0.0001
1300 1.2307 nan 0.0100 -0.0000
1400 1.2283 nan 0.0100 -0.0001
1500 1.2259 nan 0.0100 -0.0001
1600 1.2240 nan 0.0100 -0.0001
1700 1.2224 nan 0.0100 -0.0000
1800 1.2209 nan 0.0100 -0.0001
1900 1.2193 nan 0.0100 -0.0001
2000 1.2177 nan 0.0100 -0.0001
2100 1.2165 nan 0.0100 -0.0001
2200 1.2151 nan 0.0100 -0.0001
2300 1.2141 nan 0.0100 -0.0001
2400 1.2130 nan 0.0100 -0.0001
2500 1.2119 nan 0.0100 -0.0001

Diagnosis of unweighted analysis
Optimizing with es.stat.mean stopping rule

Optimized at 1658
Diagnosis of es.stat.mean weights
Optimizing with ks.stat.max stopping rule

Optimized at 182
Diagnosis of ks.stat.max weights
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Figure 3: Optimization of es.stat.mean and ks.stat.max for nonresponse weighting of egsingle
data. The horizontal axes indicate the number of iterations and the vertical axes indicate the
measure of imbalance between the two groups. For es.stat.mean the measure is the average
effect size difference between the two groups and for ks.stat.max the measure is the largest of
the KS statistics

21



> egsinge.resp <- merge(subset(egsingle, subset = resp ==

+ 1), subset(egsingle.one, subset = resp ==

+ 1, select = c(childid, wgt)))

References

[1] Bang H. and J. Robins (2005). “Doubly robust estimation in missing data and causal inference
models,” Biometrics 61:692-972.

[2] Huppler Hullsiek K., and T. Louis (2002) “Propensity score modeling strategies for the causal
analysis of observational data,” Biostatistics 3:179-193.

[3] Dehejia, R.H. and S. Wahba (1999). “Causal effects in nonexperimental studies: re-evaluating the
evaluation of trainingpPrograms,” Journal of the American Statistical Association 94:1053–1062.

[4] Efron, B., T. Hastie, I. Johnstone, R. Tibshirani (2004). “Least angle regression,” Annals of Statis-
tics 32(2):407–499.

[5] Friedman, J.H. (2001). “Greedy function approximation: a gradient boosting machine,” Annals of
Statistics 29(5):1189–1232.

[6] Friedman, J.H. (2002). “Stochastic gradient boosting,” Computational Statistics and Data Analysis
38(4):367–378.

[7] Friedman, J.H., T. Hastie, R. Tibshirani (2000). “Additive logistic regression: a statistical view of
boosting,” Annals of Statistics 28(2):337–374.

[8] Hastie, T., R. Tibshirani, and J. Friedman (2001). The Elements of Statistical Learning. Springer-
Verlag, New York.

[9] Hirano, K. and G. Imbens (2001). “Estimation of causal effects using propensity score weighting:
An application to data on right heart catheterization,” Health Services and Outcomes Research
Methodology 2:259–278.

[10] Lalonde, R. (1986).“Evaluating the econometric evaluations of training programs with experimental
data,” American Economic Review 76:604–620.

[11] Little, R. J. and S. Vartivarian (2004). “Does weighting for nonresponse in-
crease the variance of survey means? ” ASA Proceedings of the Joint Sta-
tistical Meetings, 3897-3904 American Statistical Association (Alexandria, VA)
http://www.bepress.com/cgi/viewcontent.cgi?article=1034&context=umichbiostat.

[12] McCaffrey, D., G. Ridgeway, Andrew Morral (2004). “Propensity score estimation with boosted
regression for evaluating adolescent substance abuse treatment,” Psychological Methods 9(4):403–
425.

[13] Ridgeway, G. (1999). “The state of boosting,” Computing Science and Statistics 31:172–181.

[14] Ridgeway, G. (2005). GBM 1.5 package manual. http://cran.r-project.org/doc/packages/gbm.pdf.

[15] Ridgeway, G. (2006). “Assessing the effect of race bias in post-traffic stop outcomes using propensity
scores.” Journal of Quantitative Criminology 22(1).

[16] Rosenbaum, P. and D. Rubin (1983). “The Central Role of the Propensity Score in Observational
Studies for Causal Effects,” Biometrika 70(1):41–55.

[17] Rosenbaum, P. (1987). “Model-based direct adjustment,” Journal of the American Statistical Asso-
ciation 82:387–394.

22



[18] Tibshirani, R. (1996). “Regression shrinkage and selection via the lasso,” Journal of the Royal
Statistical Society, Series B 58(1):267–288.

[19] Wooldridge, J. (2002). Econometric analysis of cross section and panel data, MIT Press, Cambridge.

23


