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1 Introduction

The R package wsrf is a parallel implementation of the Weighted Subspace Random Forest
algorithm (wsrf) of [4]. A novel variable weighting method is used for variable subspace se-
lection in place of the traditional approach of random variable sampling. This new approach
is particularly useful in building models for high dimensional data—often consisting of thou-
sands of variables. Parallel computation is used to take advantage of multi-core machines and
clusters of machines to build random forest models from high dimensional data with reduced
elapsed times.

2 Requirements and Installation Notes

Currently, wsrf requires R (>= 3.0.0), Rcpp (>= 0.10.2). For the use of multi-threading, a
C++ compiler with C++11 standard support of threads or the Boost C++ library [1] with
version above 1.54 is required. The choice is available at installation time depending on what
is available to the user. To install the latest version of the package, from within R run:

install.packages("wsrf")

By default, multi-threading functionality is not enabled, which can be configured through
the argument configure.args.

install.packages("wsrf", configure.args="--enable-c11=yes")

We recommend using C++11 standard library for accessing multi-threaded functionality,
which will be our main focus for development in the future. Though support for compiling
C++11 code in packages is not available in current release of R, it has been tested that it
can be compiled if the user has already installed the latest version of GCC and C++ standard
library1.

Besides the default installation for C++11, we also provide another implementations of
wsrf, which implements parallelism using Boost.

The choice of version to install is available at build time. The version without parallelism,
as required when C++11 is not available nor is Boost, and is the recommended and only
possible choice for Microsoft Windows platform with the current version of R (3.0) (the same
as the first installation method above):

1C++11 support is experimental in R-devel now, see http://developer.r-project.org/blosxom.cgi/
R-devel/NEWS/2013/12/02#n2013-12-02
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install.packages("wsrf",
configure.args="--enable-c11=no")

Finally the version using Boost for multithreading can be installed with the appropriate
configuration options. This is suitable when the version of C++ available does not support
C++11.

install.packages("wsrf",
configure.args="--with-boost-include=<Boost include path>

--with-boost-lib=<Boost lib path>")

3 Usage

This section demonstrates how to use wsrf, especially on a cluster of machines.
The example uses a small dataset weather from rattle [3]. See the help page of rattle in R

(?weather) for more details of weather. Below are the basic information of it.

library(rattle)
ds <- weather
dim(ds)

## [1] 366 24

names(ds)

## [1] "Date" "Location" "MinTemp" "MaxTemp"
## [5] "Rainfall" "Evaporation" "Sunshine" "WindGustDir"
## [9] "WindGustSpeed" "WindDir9am" "WindDir3pm" "WindSpeed9am"
## [13] "WindSpeed3pm" "Humidity9am" "Humidity3pm" "Pressure9am"
....

Before building the model we need to prepare the training dataset. First we note the
various roles played by the different variables, including identifying the irrelevant variables

target <- "RainTomorrow"
id <- c("Date", "Location")
risk <- "RISK_MM"
ignore <- c(id, if (exists("risk")) risk)

(vars <- setdiff(names(ds), ignore))

## [1] "MinTemp" "MaxTemp" "Rainfall" "Evaporation"
## [5] "Sunshine" "WindGustDir" "WindGustSpeed" "WindDir9am"
## [9] "WindDir3pm" "WindSpeed9am" "WindSpeed3pm" "Humidity9am"
## [13] "Humidity3pm" "Pressure9am" "Pressure3pm" "Cloud9am"
....
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dim(ds[vars])

## [1] 366 21

Next we deal with missing values, using na.roughfix() from randomForest to take care
of them.

library(randomForest)
if (sum(is.na(ds[vars]))) ds[vars] <- na.roughfix(ds[vars])
ds[target] <- as.factor(ds[[target]])
(tt <- table(ds[target]))

##
## No Yes
## 300 66

We construct the formula that describes the model which will predict the target based on
all other variables.

(form <- as.formula(paste(target, "~ .")))

## RainTomorrow ~ .

Finally we create the randomly selected training and test datasets, setting a seed so that
the results can be exactly replicated.

seed <- 42
set.seed(seed)
length(train <- sample(nrow(ds), 0.7*nrow(ds)))

## [1] 256

length(test <- setdiff(seq_len(nrow(ds)), train))

## [1] 110

The signature of the function to build a weighted random forest model in wsrf is:

wsrf(formula,
data,
ntrees=500,
nvars=NULL,
weights=TRUE,
parallel=TRUE)

We use the training dataset to build a random forest model. All parameters, except
“formula” and “data”, use their default values: 500 for “ntrees” — the number of trees, the
same as other package (randomForest and party); TRUE for “weights” — weighted subspace
random forest or random forest; TRUE for “parallel” — use multi-thread or other options, etc.
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library(wsrf)
model.wsrf <- wsrf(form, data=ds[train, vars])
print(model.wsrf, summary=TRUE)

##
## Tree 1 with 51 nodes:
## 1) root
## ..2) Pressure9am <= 1013.2
....

Here in the output, Strength and Correlation are two measures introduced in [2] for evalu-
ating a random forest model. Strength measures the collective performance of individual trees
in a random forest and Correlation measures the diversity of the trees.

We can also obtain Strength and Correlation by:

strength(model.wsrf)

## strength
## 0.6213

correlation(model.wsrf)

## correlation
## 0.1866

Then, predict the classes of test data.

cl <- predict(model.wsrf, newdata=ds[test, vars], type="class")
actual <- ds[test, target]
(accuracy.wsrf <- sum(cl == actual, na.rm=TRUE)/length(actual))

## [1] 0.8455

Thus, we have built a model that is 84.5455% accurate on unseen testing data.
To compare with cforest and randomForest,

library(randomForest)
library(party)
model.randomForest <- randomForest(form, data=ds[train, vars])
model.cforest <- cforest(form, data=ds[train, vars])

cl <- predict(model.randomForest, newdata=ds[test, vars], type="response")
actual <- ds[test, target]
(accuracy.randomForest <- sum(cl == actual, na.rm=TRUE)/length(actual))

## [1] 0.8818
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cl <- predict(model.cforest, newdata=ds[test, vars], type="response")
actual <- ds[test, target]
(accuracy.cforest <- sum(cl == actual, na.rm=TRUE)/length(actual))

## [1] 0.8091

Next, we will specify building the model on a cluster of servers.

servers <- paste0("node", 31:40)
model.wsrf <- wsrf(form, data=ds[train, vars], parallel=servers)

All we need is a character verctor specifying the hostnames of which nodes to use, or a
named integer vector, whose values of the elements give how many threads to use for model
building, in other words, how many trees built simultaneously. More detail descriptions about
wsrf are presented in.
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