Package 'candisc'

May 6, 2024
Type Package
Title Visualizing Generalized Canonical Discriminant and Canonical Correlation Analysis
Version 0.9.0
Date 2024-05-05
Depends R ($>=3.5 .0$), heplots $(>=0.8-6$)
Imports car, graphics, stats
Suggests rgl, carData, corrplot, knitr, rmarkdown, MASS, rpart, rpart.plot
LazyLoad yes
LazyData yes
Maintainer Michael Friendly friendly@yorku.ca
Language en-US
Description Functions for computing and visualizing generalized canonical discriminant analyses and canonical correlation analysis for a multivariate linear model.
Traditional canonical discriminant analysis is restricted to a one-way 'MANOVA' design and is equivalent to canonical correlation analysis between a set of quantitative response variables and a set of dummy variables coded from the factor variable.
The 'candisc' package generalizes this to higher-way 'MANOVA' designs for all factors in a multivariate linear model, computing canonical scores and vectors for each term. The graphic functions provide lowrank (1D, 2D, 3D)
visualizations of terms in an 'mlm' via the 'plot.candisc' and 'heplot.candisc' methods. Related plots are
now provided for canonical correlation analysis when all predictors are quantitative.
License GPL (>=2)
Encoding UTF-8
VignetteBuilder knitr
URL https://github.com/friendly/candisc/,
https://friendly.github.io/candisc/
BugReports https://github.com/friendly/candisc/issues
RoxygenNote 7.3.1
NeedsCompilation no
Author Michael Friendly [aut, cre] (https://orcid.org/0000-0002-3237-0941),John Fox [aut] (https://orcid.org/0000-0002-1196-8012)
Repository CRAN
Date/Publication 2024-05-06 17:50:03 UTC
R topics documented:
candisc-package 2
cancor 4
candisc 10
candiscList 15
can_lm 16
dataIndex 17
Grass 18
heplot.cancor 19
heplot.candisc 22
heplot.candiscList 25
HSB 26
plot.cancor 27
predictor.names 30
redundancy 31
varOrder 32
vecscale 35
vectors 36
Wilks 37
Wine 39
Wolves 40
Index 42
candisc-package Visualizing Generalized Canonical Discriminant and Canonical Cor-
relation Analysis

Description

This package includes functions for computing and visualizing generalized canonical discriminant analyses and canonical correlation analysis for a multivariate linear model. The goal is to provide ways of visualizing such models in a low-dimensional space corresponding to dimensions (linear combinations of the response variables) of maximal relationship to the predictor variables.

Details

Traditional canonical discriminant analysis is restricted to a one-way MANOVA design and is equivalent to canonical correlation analysis between a set of quantitative response variables and a set of dummy variables coded from the factor variable. The candisc package generalizes this to multi-way MANOVA designs for all terms in a multivariate linear model (i.e., an mlm object), computing canonical scores and vectors for each term (giving a candiscList object).

The graphic functions are designed to provide low-rank (1D, 2D, 3D) visualizations of terms in a mlm via the plot.candisc method, and the HE plot heplot.candisc and heplot3d.candisc methods. For mlms with more than a few response variables, these methods often provide a much simpler interpretation of the nature of effects in canonical space than heplots for pairs of responses or an HE plot matrix of all responses in variable space.

Analogously, a multivariate linear (regression) model with quantitative predictors can also be represented in a reduced-rank space by means of a canonical correlation transformation of the Y and X variables to uncorrelated canonical variates, Ycan and Xcan. Computation for this analysis is provided by cancor and related methods. Visualization of these results in canonical space are provided by the plot. cancor, heplot. cancor and heplot3d. cancor methods.

These relations among response variables in linear models can also be useful for "effect ordering" (Friendly \& Kwan (2003) for variables in other multivariate data displays to make the displayed relationships more coherent. The function varOrder implements a collection of these methods.
A new vignette, vignette("diabetes", package="candisc"), illustrates some of these methods. A more comprehensive collection of examples is contained in the vignette for the heplots package,
vignette("HE-examples", package="heplots").
The organization of functions in this package and the heplots package may change in a later version.

Author(s)

Michael Friendly and John Fox
Maintainer: Michael Friendly friendly@yorku.ca

References

Friendly, M. (2007). HE plots for Multivariate General Linear Models. Journal of Computational and Graphical Statistics, 16(2) 421-444. http://datavis.ca/papers/jcgs-heplots. pdf, doi:10.1198/106186007X208407.
Friendly, M. \& Kwan, E. (2003). Effect Ordering for Data Displays, Computational Statistics and Data Analysis, 43, 509-539. doi:10.1016/S01679473(02)002906

Friendly, M. \& Sigal, M. (2014). Recent Advances in Visualizing Multivariate Linear Models. Revista Colombiana de Estadistica, 37(2), 261-283. doi:10.15446/rce.v37n2spe. 47934.

Friendly, M. \& Sigal, M. (2017). Graphical Methods for Multivariate Linear Models in Psychological Research: An R Tutorial, The Quantitative Methods for Psychology, 13 (1), 20-45. doi:10.20982/tqmp.13.1.p020.
Gittins, R. (1985). Canonical Analysis: A Review with Applications in Ecology, Berlin: Springer.

See Also

heplot for details about HE plots.
candisc, cancor for details about canonical discriminant analysis and canonical correlation analysis.
cancor Canonical Correlation Analysis

Description

The function cancor generalizes and regularizes computation for canonical correlation analysis in a way conducive to visualization using methods in the heplots package.
The package provides the following display, extractor and plotting methods for "cancor" objects
print(), summary () Print and summarise the CCA
coef() Extract coefficients for X, Y, or both
scores() Extract observation scores on the canonical variables
redundancy () Redundancy analysis: proportion of variances of the variables in each set (X and Y) accounted for by the variables in the other set through the canonical variates
plot() Plot pairs of canonical scores with a data ellipse and regression line
heplot() HE plot of the Y canonical variables showing effects of the X variables and projections of the Y variables in this space.

As well, the function provides for observation weights, which may be useful in some situations, as well as providing a basis for robust methods in which potential outliers can be down-weighted.

Usage

cancor (x, ...)
\#\# S3 method for class 'formula'
cancor(formula, data, subset, weights, na.rm = TRUE, method = "gensvd", ...)
\#\# Default S3 method:
cancor (
x ,
y,
weights,
X.names = colnames(x),
Y.names = colnames (y),
row.names = rownames(x),
xcenter = TRUE,
ycenter = TRUE,
xscale = FALSE,
yscale $=$ FALSE,

```
    ndim = min(p, q),
    set.names = c("X", "Y"),
    prefix = c("Xcan", "Ycan"),
    na.rm = TRUE,
    use = if (na.rm) "complete" else "pairwise",
    method = "gensvd",
)
## S3 method for class 'cancor'
print(x, digits = max(getOption("digits") - 2, 3), ...)
## S3 method for class 'cancor'
summary(object, digits = max(getOption("digits") - 2, 3), ...)
## S3 method for class 'cancor'
scores(x, type = c("x", "y", "both", "list", "data.frame"), ...)
## S3 method for class 'cancor'
coef(object, type = c("x", "y", "both", "list"), standardize = FALSE, ...)
```


Arguments

x	Varies depending on method. For the cancor. default method, this should be a matrix or data.frame whose columns contain the X variables
	Other arguments, passed to methods
formula	A two-sided formula of the form cbind (y1, y2, y $3, \ldots$) $\sim x 1+x 2+x 3+\ldots$
data	The data.frame within which the formula is evaluated
subset	an optional vector specifying a subset of observations to be used in the calculations.
weights	Observation weights. If supplied, this must be a vector of length equal to the number of observations in X and Y , typically within [0,1]. In that case, the variance-covariance matrices are computed using cov.wt, and the number of observations is taken as the number of non-zero weights.
na.rm	logical, determining whether observations with missing cases are excluded in the computation of the variance matrix of (X,Y). See Notes for details on missing data.
method	the method to be used for calculation; currently only method = "gensvd" is supported;
y	For the cancor . default method, a matrix or data.frame whose columns contain the Y variables
X.names, Y.names	
	Character vectors of names for the X and Y variables.
row.names	Observation names in x , y
xcenter, ycenter	
	logical. Center the X, Y variables? [not yet implemented]

xscale, yscale	logical. Scale the X, Y
ndim	Number of canonical dimensions to retain in the result, for scores, coefficients, etc.
set. names	A vector of two character strings, giving names for the collections of the X, Y variables.
prefix	A vector of two character strings, giving prefixes used to name the X and Y canonical variables, respectively.
use	argument passed to var determining how missing data are handled. Only the default, use="complete" is allowed when observation weights are supplied.
digits	Number of digits passed to print and summary methods
object	A cancor object for related methods.
type	For the coef method, the type of coefficients returned, one of "x", "y", "both". For the scores method, the same list, or "data. frame", which returns a data.frame containing the X and Y canonical scores.
standardize	For the coef method, whether coefficients should be standardized by dividing by the standard deviations of the X and Y variables.

Details

Canonical correlation analysis (CCA), as traditionally presented is used to identify and measure the associations between two sets of quantitative variables, X and Y . It is often used in the same situations for which a multivariate multiple regression analysis (MMRA) would be used.
However, CCA is is "symmetric" in that the sets X and Y have equivalent status, and the goal is to find orthogonal linear combinations of each having maximal (canonical) correlations. On the other hand, MMRA is "asymmetric", in that the Y set is considered as responses, each one to be explained by separate linear combinations of the Xs.
Let $\mathbf{Y}_{n \times p}$ and $\mathbf{X}_{n \times q}$ be two sets of variables over which CCA is computed. We find canonical coefficients $\mathbf{A}_{p \times k}$ and $\mathbf{B}_{q \times k}, k=\min (p, q)$ such that the canonical variables

$$
\mathbf{U}_{n \times k}=\mathbf{Y A} \quad \text { and } \quad \mathbf{V}_{n \times k}=\mathbf{X B}
$$

have maximal, diagonal correlation structure. That is, the coefficients \mathbf{A} and \mathbf{B} are chosen such that the (canonical) correlations between each pair $r_{i}=\operatorname{cor}\left(\mathbf{u}_{i}, \mathbf{v}_{i}\right), i=1,2, \ldots, k$ are maximized and all other pairs are uncorrelated, $r_{i j}=\operatorname{cor}\left(\mathbf{u}_{i}, \mathbf{v}_{j}\right)=0, i \neq j$. Thus, all correlations between the X and Y variables are channeled through the correlations between the pairs of canonical variates.
For visualization using HE plots, it is most natural to consider plots representing the relations among the canonical variables for the Y variables in terms of a multivariate linear model predicting the Y canonical scores, using either the X variables or the X canonical scores as predictors. Such plots, using heplot. cancor provide a low-rank (1D, 2D, 3D) visualization of the relations between the two sets, and so are useful in cases when there are more than 2 or 3 variables in each of X and Y .
The connection between CCA and HE plots for MMRA models can be developed as follows. CCA can also be viewed as a principal component transformation of the predicted values of one set of variables from a regression on the other set of variables, in the metric of the error covariance matrix.
For example, regress the Y variables on the X variables, giving predicted values $\hat{Y}=X\left(X^{\prime} X\right)^{-1} X^{\prime} Y$ and residuals $R=Y-\hat{Y}$. The error covariance matrix is $E=R^{\prime} R /(n-1)$. Choose a transformation \mathbf{Q} that orthogonalizes the error covariance matrix to an identity, that is, $(R Q)^{\prime}(R Q)=$
$Q^{\prime} R^{\prime} R Q=(n-1) I$, and apply the same transformation to the predicted values to yield, say, $Z=\hat{Y} Q$. Then, a principal component analysis on the covariance matrix of Z gives eigenvalues of $E^{-1} H$, and so is equivalent to the MMRA analysis of $\operatorname{lm}(\mathrm{Y} \sim \mathrm{X})$ statistically, but visualized here in canonical space.

Value

An object of class cancorr, a list with the following components:
cancor Canonical correlations, i.e., the correlations between each canonical variate for the Y variables with the corresponding canonical variate for the X variables.
names \quad Names for various items, a list of 4 components: X, Y, row. names, set. names
ndim Number of canonical dimensions extracted, $<=\min (p, q)$
dim Problem dimensions, a list of 3 components: p (number of X variables), q (number of Y variables), n (sample size)
coef Canonical coefficients, a list of 2 components: X, Y
scores Canonical variate scores, a list of 2 components: X, Y
scores Canonical variate scores, a list of 2 components:
X Canonical variate scores for the X variables
Y Canonical variate scores for the Y variables
X
Y The matrix Y
weights Observation weights, if supplied, else NULL
structure Structure correlations, a list of 4 components: X. xscores, Y. xscores, X. yscores,
Y.yscores
structure Structure correlations ("loadings"), a list of 4 components:
X.xscores Structure correlations of the X variables with the Xcan canonical scores
Y.xscores Structure correlations of the Y variables with the Xcan canonical scores
X.yscores Structure correlations of the X variables with the Ycan canonical scores
Y.yscores Structure correlations of the Y variables with the Ycan canonical scores

The formula method also returns components call and terms

Methods (by class)

- cancor(formula): "formula" method.
- cancor (default): "default" method.

Methods (by generic)

- print(cancor): print() method for "cancor" objects.
- summary (cancor): summary () method for "cancor" objects.
- scores(cancor): scores() method for "cancor" objects.
- coef(cancor): $\operatorname{coef()~method~for~"cancor"~objects.~}$

Note

Not all features of CCA are presently implemented: standardized vs. raw scores, more flexible handling of missing data, other plot methods, ...

Author(s)

Michael Friendly

References

Gittins, R. (1985). Canonical Analysis: A Review with Applications in Ecology, Berlin: Springer.
Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. London: Academic Press.

See Also

Other implementations of CCA: cancor (very basic), cca in the yacca (fairly complete, but very messy return structure), cc in CCA (fairly complete, very messy return structure, no longer maintained).
redundancy, for redundancy analysis; plot.cancor, for enhanced scatterplots of the canonical variates.
heplot. cancor for CCA HE plots and heplots for generic heplot methods.
candisc for related methods focused on multivariate linear models with one or more factors among the X variables.

Examples

```
data(Rohwer, package="heplots")
X <- as.matrix(Rohwer[,6:10]) # the PA tests
Y <- as.matrix(Rohwer[,3:5]) # the aptitude/ability variables
# visualize the correlation matrix using corrplot()
if (require(corrplot)) {
M <- cor(cbind(X,Y))
corrplot(M, method="ellipse", order="hclust", addrect=2, addCoef.col="black")
}
(cc <- cancor(X, Y, set.names=c("PA", "Ability")))
## Canonical correlation analysis of:
```

```
## 5 PA variables: n, s, ns, na, ss
## with 3 Ability variables: SAT, PPVT, Raven
##
## CanR CanRSQ Eigen percent cum scree
## 1 0.6703 0.44934 0.81599 77.30 77.30 ********************************
## 2 0. 3837 0.14719 0.17260 16.35 93.65 *******
## 3 0.2506 0.06282 0.06704 6.35 100.00 **
##
## Test of H0: The canonical correlations in the
## current row and all that follow are zero
##
## CanR WilksL F df1 df2 p.value
## 1 0.67033 0.44011 3.8961 15 168.8 0.000006
## 2 0.38366 0.79923 1.8379 8 124.0 0.076076
## 3 0.25065 0.93718 1.4078 3 63.0 0.248814
# formula method
cc <- cancor(cbind(SAT, PPVT, Raven) ~ n + s + ns + na + ss, data=Rohwer,
    set.names=c("PA", "Ability"))
# using observation weights
set.seed(12345)
wts <- sample(0:1, size=nrow(Rohwer), replace=TRUE, prob=c(.05, . 95))
(ccw <- cancor(X, Y, set.names=c("PA", "Ability"), weights=wts) )
# show correlations of the canonical scores
zapsmall(cor(scores(cc, type="x"), scores(cc, type="y")))
# standardized coefficients
coef(cc, type="both", standardize=TRUE)
# plot canonical scores
plot(cc,
    smooth=TRUE, pch=16, id.n = 3)
text(-2, 1.5, paste("Can R =", round(cc$cancor[1], 3)), pos = 4)
plot(cc, which = 2,
    smooth=TRUE, pch=16, id.n = 3)
text(-2.2, 2.5, paste("Can R =", round(cc$cancor[2], 3)), pos = 4)
##################
data(schooldata)
##################
#fit the MMreg model
school.mod <- lm(cbind(reading, mathematics, selfesteem) ~
education + occupation + visit + counseling + teacher, data=schooldata)
car::Anova(school.mod)
pairs(school.mod)
# canonical correlation analysis
school.cc <- cancor(cbind(reading, mathematics, selfesteem) ~
education + occupation + visit + counseling + teacher, data=schooldata)
```

school.cc
heplot(school.cc, xpd=TRUE, scale=0.3)
candisc Canonical discriminant analysis

Description

candisc performs a generalized canonical discriminant analysis for one term in a multivariate linear model (i.e., an mlm object), computing canonical scores and vectors. It represents a transformation of the original variables into a canonical space of maximal differences for the term, controlling for other model terms.

Usage

```
    candisc(mod, ...)
    ## S3 method for class 'mlm'
    candisc(mod, term, type = "2", manova, ndim = rank, ...)
    ## S3 method for class 'candisc'
    print(x, digits = max(getOption("digits") - 2, 3), LRtests = TRUE, ...)
    ## S3 method for class 'candisc'
    summary(
        object,
        means = TRUE,
        scores = FALSE,
        coef = c("std"),
        ndim,
        digits = max(getOption("digits") - 2, 4),
    )
    ## S3 method for class 'candisc'
    coef(object, type = c("std", "raw", "structure"), ...)
    ## S3 method for class 'candisc'
    plot(
        x,
        which = 1:2,
        conf = 0.95,
        col,
        pch,
        scale,
```

```
    asp = 1,
    var.col = "blue",
    var.lwd = par("lwd"),
    var.labels,
    var.cex = 1,
    var.pos,
    rev.axes = c(FALSE, FALSE),
    ellipse = FALSE,
    ellipse.prob = 0.68,
    fill.alpha = 0.1,
    prefix = "Can",
    suffix = TRUE,
    titles.1d = c("Canonical scores", "Structure"),
    points.1d = FALSE,
)
```


Arguments

mod	An mlm object, such as computed by $\operatorname{lm}()$ with a multivariate response
	arguments to be passed down. In particular, type="n" can be used with the plot method to suppress the display of canonical scores.
term	the name of one term from mod for which the canonical analysis is performed.
type	type of test for the model term, one of: "II", "III", "2", or "3"
manova	the Anova.mlm object corresponding to mod. Normally, this is computed internally by Anova(mod)
ndim	Number of dimensions to store in (or retrieve from, for the summary method) the means, structure, scores and coeffs.* components. The default is the rank of the H matrix for the hypothesis term.
digits	significant digits to print.
LRtests	logical; should likelihood ratio tests for the canonical dimensions be printed?
object, x	A candisc object
means	Logical value used to determine if canonical means are printed
scores	Logical value used to determine if canonical scores are printed
coef	Type of coefficients printed by the summary method. Any one or more of "std", "raw", or "structure"
which	A vector of one or two integers, selecting the canonical dimension(s) to plot. If the canonical structure for a term has ndim==1, or length(which)==1, a 1D representation of canonical scores and structure coefficients is produced by the plot method. Otherwise, a 2D plot is produced.
conf	Confidence coefficient for the confidence circles around canonical means plotted in the plot method
col	A vector of the unique colors to be used for the levels of the term in the plot method, one for each level of the term. In this version, you should assign colors and point symbols explicitly, rather than relying on the somewhat arbitrary defaults, based on palette

\(\left.$$
\begin{array}{ll}\text { pch } & \begin{array}{l}\text { A vector of the unique point symbols to be used for the levels of the term in the } \\
\text { plot method }\end{array} \\
\text { scale } & \begin{array}{l}\text { Scale factor for the variable vectors in canonical space. If not specified, a scale } \\
\text { factor is calculated to make the variable vectors approximately fill the plot space. }\end{array} \\
\text { asp } & \begin{array}{l}\text { Aspect ratio for the plot method. The asp=1 (the default) assures that the units } \\
\text { on the horizontal and vertical axes are the same, so that lengths and angles of } \\
\text { the variable vectors are interpretable. }\end{array}
$$

Color used to plot variable vectors\end{array}\right]\)| Line width used to plot variable vectors |
| :--- |
| var.col |
| var.labels |
| var.cex |
| var.pos | | Character expansion size for variable labels in the plots |
| :--- |

Details

In typical usage, the term should be a factor or interaction corresponding to a multivariate test with 2 or more degrees of freedom for the null hypothesis.

Canonical discriminant analysis is typically carried out in conjunction with a one-way MANOVA design. It represents a linear transformation of the response variables into a canonical space in which (a) each successive canonical variate produces maximal separation among the groups (e.g., maximum univariate F statistics), and (b) all canonical variates are mutually uncorrelated. For a one-way MANOVA with g groups and p responses, there are $d f h=\min (g-1, p)$ such canonical dimensions, and tests, initially stated by Bartlett (1938) allow one to determine the number of significant canonical dimensions.
Computational details for the one-way case are described in Cooley \& Lohnes (1971), and in the SAS/STAT User's Guide, "The CANDISC procedure: Computational Details," http://support. sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm\#statug_candisc_ sect012.htm.

A generalized canonical discriminant analysis extends this idea to a general multivariate linear model. Analysis of each term in the mlm produces a rank $d f_{h} \mathrm{H}$ matrix sum of squares and crossproducts matrix that is tested against the rank $d f_{e} \mathrm{E}$ matrix by the standard multivariate tests (Wilks' Lambda, Hotelling-Lawley trace, Pillai trace, Roy's maximum root test). For any given term in the mlm , the generalized canonical discriminant analysis amounts to a standard discriminant analysis based on the H matrix for that term in relation to the full-model E matrix.

The plot method for candisc objects is typically a 2D plot, similar to a biplot. It shows the canonical scores for the groups defined by the term as points and the canonical structure coefficients as vectors from the origin.

If the canonical structure for a term has ndim==1, or length(which)==1, the 1D representation consists of a boxplot of canonical scores and a vector diagram showing the magnitudes of the structure coefficients.

Value

An object of class candisc with the following components:

dfh	hypothesis degrees of freedom for term
dfe	error degrees of freedom for the mlm
rank	number of non-zero eigenvalues of $H E^{-1}$
eigenvalues	eigenvalues of $H E^{-1}$
canrsq	squared canonical correlations
pct	A vector containing the percentages of the canrsq of their total.
ndim	Number of canonical dimensions stored in the means, structure and coeffs.* components
means	A data.frame containing the class means for the levels of the factor(s) in the term
factors	A dame of the term
term	A matrix containing the raw canonical coefficients
terms	A matrix containing the standardized canonical coefficients
coeffs.raw	
coeffs.std	A matrix containing the canonical structure coefficients on ndim dimensions, i.e., the correlations between the original variates and the canonical scores. structure
These are sometimes referred to as Total Structure Coefficients.	

Methods (by class)

- candisc(mlm): "mlm" method.

Methods (by generic)

- print(candisc): print() method for "candisc" objects.
- summary (candisc): summary () method for "candisc" objects.
- coef(candisc): coef() method for "candisc" objects.
- plot(candisc): "plot" method.

Author(s)

Michael Friendly and John Fox

References

Bartlett, M. S. (1938). Further aspects of the theory of multiple regression. Proc. Cambridge Philosophical Society 34, 33-34.

Cooley, W.W. \& Lohnes, P.R. (1971). Multivariate Data Analysis, New York: Wiley.
Gittins, R. (1985). Canonical Analysis: A Review with Applications in Ecology, Berlin: Springer.

See Also

candiscList, heplot, heplot3d

Examples

```
grass.mod <- lm(cbind(N1,N9,N27,N81,N243) ~ Block + Species, data=Grass)
car::Anova(grass.mod, test="Wilks")
grass.can1 <-candisc(grass.mod, term="Species")
plot(grass.can1)
# library(heplots)
heplot(grass.can1, scale=6, fill=TRUE)
# iris data
iris.mod <- lm(cbind(Petal.Length, Sepal.Length, Petal.Width, Sepal.Width) ~ Species, data=iris)
iris.can <- candisc(iris.mod, data=iris)
#-- assign colors and symbols corresponding to species
col <- c("red", "brown", "green3")
pch <- 1:3
plot(iris.can, col=col, pch=pch)
heplot(iris.can)
# 1-dim plot
iris.can1 <- candisc(iris.mod, data=iris, ndim=1)
plot(iris.can1)
```

```
candiscList Canonical discriminant analyses
```


Description

candiscList performs a generalized canonical discriminant analysis for all terms in a multivariate linear model (i.e., an mlm object), computing canonical scores and vectors.

Usage

```
candiscList(mod, ...)
## S3 method for class 'mlm'
candiscList(mod, type = "2", manova, ndim, ...)
## S3 method for class 'candiscList'
print(x, ...)
## S3 method for class 'candiscList'
summary(object, ...)
## S3 method for class 'candiscList'
plot(x, term, ask = interactive(), graphics = TRUE, ...)
```


Arguments

mod	An mlm object, such as computed by $\operatorname{lm}()$ with a multivariate response arguments to be passed down.
type	type of test for the model term, one of: "II", "III", "2", or "3"
manova	the Anova.mlm object corresponding to mod. Normally, this is computed internally by Anova (mod)
ndim	Number of dimensions to store in the means, structure, scores and coeffs.* components. The default is the rank of the H matrix for the hypothesis term.
object, x	A candiscList object
term	The name of one term to be plotted for the plot method. If not specified, one candisc plot is produced for each term in the mlm object.
ask	If TRUE (the default, when running interactively), a menu of terms is presented; if ask is FALSE, canonical plots for all terms are produced.
graphics	if TRUE (the default, when running interactively), then the menu of terms to plot is presented in a dialog box rather than as a text menu.

Value

An object of class candiscList which is a list of "candisc" objects for the terms in the mlm.

Methods (by class)

- candiscList(mlm): "mlm" method.

Methods (by generic)

- print(candiscList): print() method for "candiscList" objects.
- summary (candiscList): summary() method for "candiscList" objects.
- plot(candiscList): plot() method for "candiscList" objects.

Author(s)

Michael Friendly and John Fox

See Also

candisc, heplot, heplot3d

Examples

```
grass.mod <- lm(cbind(N1,N9,N27,N81,N243) ~ Block + Species, data=Grass)
grass.canL <-candiscList(grass.mod)
names(grass.canL)
names(grass.canL$Species)
## Not run:
print(grass.canL)
## End(Not run)
plot(grass.canL, type="n", ask=FALSE)
heplot(grass.canL$Species, scale=6)
heplot(grass.canL$Block, scale=2)
```

```
can_lm
```

Transform a Multivariate Linear model mlm to a Canonical Representation

Description

This function uses candisc to transform the responses in a multivariate linear model to scores on canonical variables for a given term and then uses those scores as responses in a linear (lm) or multivariate linear model (mlm).
The function constructs a model formula of the form Can ~ terms where Can is the canonical score(s) and terms are the terms in the original mlm, then runs $\operatorname{lm}()$ with that formula.

Usage

```
can_lm(mod, term, ...)
```


Arguments

mod
A mlm object
term One term in that model
... Arguments passed to candisc

Value

A 1 m object if term is a rank 1 hypothesis, otherwise a mlm object

Author(s)

Michael Friendly

See Also

```
candisc, cancor
```


Examples

```
iris.mod <- lm(cbind(Petal.Length, Sepal.Length, Petal.Width, Sepal.Width) ~ Species, data=iris)
iris.can <- can_lm(iris.mod, "Species")
iris.can
car::Anova(iris.mod)
car::Anova(iris.can)
```

dataIndex Indices of observations in a model data frame

Description

Find sequential indices for observations in a data frame corresponding to the unique combinations of the levels of a given model term from a model object or a data frame

Usage

dataIndex(x, term)

Arguments

x
term

Either a data frame or a model object
The name of one term in the model, consisting only of factors

Value

A vector of indices.

Author(s)

Michael Friendly

Examples

```
factors <- expand.grid(A=factor(1:3),B=factor(1:2),C=factor(1:2))
n <- nrow(factors)
responses <-data.frame(Y1=10+round(10*rnorm(n)),Y2=10+round(10*rnorm(n)))
test <- data.frame(factors, responses)
mod <- lm(cbind(Y1,Y2) ~ A*B, data=test)
dataIndex(mod, "A")
dataIndex(mod, "A:B")
```

Grass Yields from Nitrogen nutrition of grass species

Description

The data frame Grass gives the yield $(10 * \log 10$ dry-weight $(\mathrm{g}))$ of eight grass Species in five replicates (Block) grown in sand culture at five levels of nitrogen.

Format

A data frame with 40 observations on the following 7 variables.
Species a factor with levels B.media D.glomerata F.ovina F.rubra H. pubesens K.cristata L. perenne P.bertolonii

Block a factor with levels 12345
N 1 species yield at 1 ppm Nitrogen
N9 species yield at 9 ppm Nitrogen
N27 species yield at 27 ppm Nitrogen
N81 species yield at 81 ppm Nitrogen
N243 species yield at 243 ppm Nitrogen

Details

Nitrogen (NaNO3) levels were chosen to vary from what was expected to be from critically low to almost toxic. The amount of Nitrogen can be considered on a $\log 3$ scale, with levels $0,2,3,4,5$. Gittins (1985, Ch. 11) treats these as equally spaced for the purpose of testing polynomial trends in Nitrogen level.
The data are also not truly multivariate, but rather a split-plot experimental design. For the purpose of exposition, he regards Species as the experimental unit, so that correlations among the responses refer to a composite representative of a species rather than to an individual exemplar.

Source

Gittins, R. (1985), Canonical Analysis: A Review with Applications in Ecology, Berlin: SpringerVerlag, Table A-5.

Examples

```
str(Grass)
grass.mod <- lm(cbind(N1,N9,N27,N81,N243) ~ Block + Species, data=Grass)
car::Anova(grass.mod)
grass.canL <-candiscList(grass.mod)
names(grass.canL)
names(grass.canL$Species)
```

```
heplot.cancor Canonical Correlation HE plots
```


Description

Hypothesis - Error (HE) plots for canonical correlation analysis provide a new graphical method for understanding the relations between two sets of variables, \mathbf{X} and \mathbf{Y}. They are similar to HE plots for multivariate multiple regression (MMRA) problems, except that ...

These functions plot ellipses (or ellipsoids in 3D) in canonical space representing the hypothesis and error sums-of-squares-and-products matrices for terms in a multivariate linear model representing the result of a canonical correlation analysis. They provide a low-rank 2D (or 3D) view of the effects in the space of maximum canonical correlations, together with variable vectors representing the correlations of Y variables with the canonical dimensions.

For consistency with heplot. candisc, the plots show effects in the space of the canonical Y variables selected by which.

The interpretation of variable vectors in these plots is different from that of the terms plotted as H "ellipses," which appear as degenerate lines in the plot (because they correspond to 1 df tests of $\operatorname{rank}(\mathrm{H})=1)$.

In canonical space, the interpretation of the H ellipses for the terms is the same as in ordinary HE plots: a term is significant iff its H ellipse projects outside the (orthogonalized) E ellipsoid somewhere in the space of the Y canonical dimensions. The orientation of each H ellipse with respect to the Y canonical dimensions indicates which dimensions that X variate contributes to.
On the other hand, the variable vectors shown in these plots are intended only to show the correlations of Y variables with the canonical dimensions. Only their relative lengths and angles with respect to the Y canonical dimensions have meaning. Relative lengths correspond to proportions of variance accounted for in the Y canonical dimensions plotted; angles between the variable vectors and the canonical axes correspond to the structure correlations. The absolute lengths of these vectors are typically manipulated by the scale argument to provide better visual resolution and labeling for the variables.

Setting the aspect ratio of these plots is important for the proper interpretation of angles between the variable vectors and the coordinate axes. However, this then makes it impossible to change the aspect ratio of the plot by re-sizing manually.

```
Usage
    ## S3 method for class 'cancor'
    heplot(
    mod,
    which = 1:2,
    scale,
    asp = 1,
    var.vectors = "Y",
    var.col = c("blue", "darkgreen"),
    var.lwd = par("lwd"),
    var.cex = par("cex"),
    var.xpd = TRUE,
    prefix = "Ycan",
    suffix = TRUE,
    terms = TRUE,
    )
```


Arguments

mod A cancor object
which A numeric vector containing the indices of the Y canonical dimensions to plot.
scale Scale factor for the variable vectors in canonical space. If not specified, the function calculates one to make the variable vectors approximately fill the plot window.
asp
aspect ratio setting. Use asp=1 in 2D plots and asp="iso" in 3D plots to ensure equal units on the axes. Use asp=NA in 2D plots and asp=NULL in 3D plots to allow separate scaling for the axes. See Details below.
var. vectors Which variable vectors to plot? A character vector containing one or more of " X " and " Y ".

var.col	Color(s) for variable vectors and labels, a vector of length 1 or 2. The first color is used for Y vectors and the second for X vectors, if these are plotted.
var.lwd	Line width for variable vectors
var.cex	Text size for variable vector labels
var.xpd	logical. Allow variable labels outside the plot box? Does not apply to 3D plots. prefix suffix
Prefix for labels of the Y canonical dimensions. Suffix for labels of canonical dimensions. If suffix=TRUE the percent of hy- pothesis (H) variance accounted for by each canonical dimension is added to the axis label.	
terms	Terms for the X variables to be plotted in canonical space. The default, terms=TRUE or terms="X" plots H ellipses for all of the X variables. terms="Xcan" plots H ellipses for all of the X canonical variables, Xcan1, Xcan2,
\ldots	Other arguments passed to link[heplots]\{heplot $\}.$ In particular, you can pass linear hypotheses among the term variables via hypotheses.

Value

Returns invisibly an object of class "heplot", with coordinates for the various hypothesis ellipses and the error ellipse, and the limits of the horizontal and vertical axes.

Author(s)

Michael Friendly

References

Gittins, R. (1985). Canonical Analysis: A Review with Applications in Ecology, Berlin: Springer.
Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. London: Academic Press.

See Also

cancor for details on canonical correlation as implemented here; plot. cancor for scatterplots of canonical variable scores. heplot.candisc, heplot, linearHypothesis

Examples

```
data(Rohwer, package="heplots")
X <- as.matrix(Rohwer[,6:10])
Y <- as.matrix(Rohwer[,3:5])
cc <- cancor(X, Y, set.names=c("PA", "Ability"))
# basic plot
heplot(cc)
# note relationship of joint hypothesis to individual ones
heplot(cc, scale=1.25, hypotheses=list("na+ns"=c("na", "ns")))
```

```
# more options
heplot(cc, hypotheses=list("All X"=colnames(X)),
fill=c(TRUE,FALSE), fill.alpha=0.2,
var.cex=1.5, var.col="red", var.lwd=3,
prefix="Y canonical dimension"
)
# 3D version
## Not run:
heplot3d(cc, var.lwd=3, var.col="red")
## End(Not run)
```

heplot.candisc Canonical Discriminant HE plots

Description

These functions plot ellipses (or ellipsoids in 3D) in canonical discriminant space representing the hypothesis and error sums-of-squares-and-products matrices for terms in a multivariate linear model. They provide a low-rank 2D (or 3D) view of the effects for that term in the space of maximum discrimination.

Usage

```
## S3 method for class 'candisc'
heplot(
    mod,
    which = 1:2,
    scale,
    asp = 1,
    var.col = "blue",
    var.lwd = par("lwd"),
    var.cex = par("cex"),
    var.pos,
    rev.axes = c(FALSE, FALSE),
    prefix = "Can",
    suffix = TRUE,
    terms = mod$term,
)
```


Arguments

mod
which

A candisc object for one term in a mlm
A numeric vector containing the indices of the canonical dimensions to plot.
\(\left.$$
\begin{array}{ll}\text { scale } & \begin{array}{l}\text { Scale factor for the variable vectors in canonical space. If not specified, the } \\
\text { function calculates one to make the variable vectors approximately fill the plot } \\
\text { window. }\end{array}
$$

asp

Aspect ratio for the horizontal and vertical dimensions. The defaults, asp=1 for

heplot. candisc and asp="iso" for heplot3d. candisc ensure equal units on

all axes, so that angles and lengths of variable vectors are interpretable. As well,

the standardized canonical scores are uncorrelated, so the Error ellipse (ellip-

soid) should plot as a circle (sphere) in canonical space. For heplot3d. candisc,

use asp=NULL to suppress this transformation to iso-scaled axes.\end{array}\right]\)| Color for variable vectors and labels |
| :--- |
| var.col |
| var.lwd |
| var.cex |
| var.pos width for variable vectors |\quad| Text size for variable vector labels |
| :--- |

Details

The generalized canonical discriminant analysis for one term in a mlm is based on the eigenvalues, λ_{i}, and eigenvectors, V , of the H and E matrices for that term. This produces uncorrelated canonical scores which give the maximum univariate F statistics. The canonical HE plot is then just the HE plot of the canonical scores for the given term.

For heplot3d.candisc, the default asp="iso" now gives a geometrically correct plot, but the third dimension, CAN3, is often small. Passing an expanded range in zlim to heplot3d usually helps.

Value

heplot.candisc returns invisibly an object of class "heplot", with coordinates for the various hypothesis ellipses and the error ellipse, and the limits of the horizontal and vertical axes.
Similarly, heploted. candisc returns an object of class "heplot3d".

Author(s)

Michael Friendly and John Fox

References

Friendly, M. (2006). Data Ellipses, HE Plots and Reduced-Rank Displays for Multivariate Linear Models: SAS Software and Examples Journal of Statistical Software, 17(6), 1-42. https://www. jstatsoft.org/v17/i06/ doi:10.18637/jss.v017.i06
Friendly, M. (2007). HE plots for Multivariate General Linear Models. Journal of Computational and Graphical Statistics, 16(2) 421-444. http://datavis.ca/papers/jcgs-heplots. pdf, doi:10.1198/106186007X208407.

See Also

candisc, candiscList, heplot, heplot3d, aspect3d

Examples

```
## Pottery data, from car package
data(Pottery, package = "carData")
pottery.mod <- lm(cbind(Al, Fe, Mg, Ca, Na) ~ Site, data=Pottery)
pottery.can <-candisc(pottery.mod)
heplot(pottery.can, var.lwd=3)
if(requireNamespace("rgl")){
heplot3d(pottery.can, var.lwd=3, scale=10, zlim=c(-3,3), wire=FALSE)
}
# reduce example for CRAN checks time
grass.mod <- lm(cbind(N1,N9,N27,N81,N243) ~ Block + Species, data=Grass)
grass.can1 <-candisc(grass.mod,term="Species")
grass.canL <-candiscList(grass.mod)
heplot(grass.can1, scale=6)
heplot(grass.can1, scale=6, terms=TRUE)
heplot(grass.canL, terms=TRUE, ask=FALSE)
heplot3d(grass.can1, wire=FALSE)
# compare with non-iso scaling
rgl::aspect3d(x=1,y=1,z=1)
# or,
# heplot3d(grass.can1, asp=NULL)
## Can't run this in example
# rgl::play3d(rgl::spin3d(axis = c(1, 0, 0), rpm = 5), duration=12)
# reduce example for CRAN checks time
## FootHead data, from heplots package
library(heplots)
```

```
data(FootHead)
# use Helmert contrasts for group
contrasts(FootHead$group) <- contr.helmert
foot.mod <- lm(cbind(width, circum,front.back,eye.top,ear.top,jaw)~group, data=FootHead)
foot.can <- candisc(foot.mod)
heplot(foot.can, main="Candisc HE plot",
    hypotheses=list("group.1"="group1","group.2"="group2"),
    col=c("red", "blue", "green3", "green3" ), var.col="red")
```

heplot.candiscList Canonical Discriminant HE plots

Description

These functions plot ellipses (or ellipsoids in 3D) in canonical discriminant space representing the hypothesis and error sums-of-squares-and-products matrices for terms in a multivariate linear model. They provide a low-rank 2D (or 3D) view of the effects for that term in the space of maximum discrimination.

Usage

\#\# S3 method for class 'candiscList'
heplot(mod, term, ask = interactive(), graphics = TRUE, ...)

Arguments

$$
\begin{array}{ll}
\text { mod } & \text { A candiscList object for terms in a mlm } \\
\text { term } & \begin{array}{l}
\text { The name of one term to be plotted for the heplot and heplot3d methods. If } \\
\text { not specified, one plot is produced for each term in the mlm object. }
\end{array} \\
\text { ask } & \begin{array}{l}
\text { If TRUE (the default), a menu of terms is presented; if ask is FALSE, canonical } \\
\text { HE plots for all terms are produced. }
\end{array} \\
\text { graphics } & \begin{array}{l}
\text { if TRUE (the default, when running interactively), then the menu of terms to plot } \\
\text { is presented in a dialog box rather than as a text menu. }
\end{array} \\
\ldots & \text { Arguments to be passed down }
\end{array}
$$

Value

No useful value; used for the side-effect of producing canonical HE plots.

Author(s)

Michael Friendly and John Fox

References

Friendly, M. (2006). Data Ellipses, HE Plots and Reduced-Rank Displays for Multivariate Linear Models: SAS Software and Examples Journal of Statistical Software, 17(6), 1-42. https://www. jstatsoft.org/v17/i06/ doi:10.18637/jss.v017.i06.
Friendly, M. (2007). HE plots for Multivariate General Linear Models. Journal of Computational and Graphical Statistics, 16(2) 421-444. http://datavis.ca/papers/jcgs-heplots. pdf, doi:10.1198/106186007X208407.

See Also

candisc, candiscList, heplot, heplot3d
HSB High School and Beyond Data

Description

The High School and Beyond Project was a longitudinal study of students in the U.S. carried out in 1980 by the National Center for Education Statistics. Data were collected from 58,270 high school students (28,240 seniors and 30,030 sophomores) and 1,015 secondary schools. The HSB data frame is sample of 600 observations, of unknown characteristics, originally taken from Tatsuoka (1988).

Format

A data frame with 600 observations on the following 15 variables. There is no missing data.
id Observation id: a numeric vector
gender a factor with levels male female
race Race or ethnicity: a factor with levels hispanic asian african-amer white
ses Socioeconomic status: a factor with levels low middle high
sch School type: a factor with levels public private
prog High school program: a factor with levels general academic vocation
locus Locus of control: a numeric vector
concept Self-concept: a numeric vector
mot Motivation: a numeric vector
career Career plan: a factor with levels clerical craftsman farmer homemaker laborer manager
military operative prof1 prof2 proprietor protective sales school service technical not working
read Standardized reading score: a numeric vector
write Standardized writing score: a numeric vector
math Standardized math score: a numeric vector
sci Standardized science score: a numeric vector
ss Standardized social science (civics) score: a numeric vector

Source

Tatsuoka, M. M. (1988). Multivariate Analysis: Techniques for Educational and Psychological Research (2nd ed.). New York: Macmillan, Appendix F, 430-442.

References

High School and Beyond data files: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/ 7896

Examples

```
str(HSB)
# main effects model
hsb.mod <- lm( cbind(read, write, math, sci, ss) ~
gender + race + ses + sch + prog, data=HSB)
car::Anova(hsb.mod)
# Add some interactions
hsb.mod1 <- update(hsb.mod, . ~ . + gender:race + ses:prog)
heplot(hsb.mod1, col=palette()[c(2,1,3:6)], variables=c("read","math"))
hsb.can1 <- candisc(hsb.mod1, term="race")
heplot(hsb.can1, col=c("red", "black"))
# show canonical results for all terms
## Not run:
hsb.can <- candiscList(hsb.mod)
hsb.can
## End(Not run)
```

plot.cancor Canonical Correlation Plots

Description

This function produces plots to help visualize X, Y data in canonical space.
The present implementation plots the canonical scores for the Y variables against those for the X variables on given dimensions. We treat this as a view of the data in canonical space, and so offer additional annotations to a standard scatterplot.
Canonical correlation analysis assumes that the all correlations between the X and Y variables can be expressed in terms of correlations the canonical variate pairs, (Xcan1, Ycan1), (Xcan2, Ycan2), \ldots, and that the relations between these pairs are indeed linear.
Data ellipses, and smoothed (loess) curves, together with the linear regression line for each canonical dimension help to assess whether there are peculiarities in the data that might threaten the validity of CCA. Point identification methods can be useful to determine influential cases.

```
Usage
    ## S3 method for class 'cancor'
    plot(
        x,
        which = 1,
        xlim,
        ylim,
        xlab,
        ylab,
        points = TRUE,
        add = FALSE,
        col = palette()[1],
        ellipse = TRUE,
        ellipse.args = list(),
        smooth = FALSE,
        smoother.args = list(),
        col.smooth = palette()[3],
        abline = TRUE,
        col.lines = palette()[2],
        lwd = 2,
        labels = rownames(xy),
        id.method = "mahal",
        id.n = 0,
        id.cex = 1,
        id.col = palette()[1],
)
```


Arguments

x
which
xlim, ylim
$x l a b, y l a b \quad$ Labels for x and y axes. If not specified, these are constructed from the set. names component of x.
points logical. Display the points?
add logical. Add to an existing plot?
col Color for points.
ellipse
logical. Draw a data ellipse for the canonical scores?
ellipse.args A list of arguments passed to dataEllipse. Internally, the function sets the default value for levels to 0.68 .
smooth logical. Draw a (loess) smoothed curve?
smoother.args Arguments passed to loessLine, which should be consulted for details and defaults.
col. smooth Color for the smoothed curve.

abline	logical. Draw the linear regression line for Ycan[,which] on Xcan[,which]?
col.lines	Color for the linear regression line
lwd	Line widths
labels	Point labels for point identification via the id.method argument. id.method
Method used to identify individual points. See showLabels for details. The default, id.method = "mahal" identifies the id.n points furthest from the cen- troid.	
id.n	Number of points to identify id.cex, id.col
\ldots	Character size and color for labeled points

Value

None. Used for its side effect of producing a plot. the value returned

Author(s)

Michael Friendly

References

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. London: Academic Press.

See Also

cancor,
dataEllipse, loessLine, showLabels

Examples

```
data(Rohwer, package="heplots")
X <- as.matrix(Rohwer[,6:10]) # the PA tests
Y <- as.matrix(Rohwer[,3:5]) # the aptitude/ability variables
cc <- cancor(X, Y, set.names=c("PA", "Ability"))
plot(cc)
# exercise some options
plot(cc, which=1,
    smooth=TRUE,
    pch = 16,
    id.n=3, ellipse.args=list(fill=TRUE, fill.alpha = 0.2))
plot(cc, which=2, smooth=TRUE)
plot(cc, which=3, smooth=TRUE)
# plot vectors showing structure correlations of Xcan and Ycan with their own variables
plot(cc)
```

```
struc <- cc$structure
Xstruc <- struc$X.xscores[,1]
Ystruc <- struc$Y.yscores[,1]
scale <- 2
# place vectors in the margins of the plot
usr <- matrix(par("usr"), nrow=2, dimnames=list(c("min", "max"), c("x", "y")))
ypos <- usr[2,2] - (1:5)/10
arrows(0, ypos, scale*Xstruc, ypos, angle=10, len=0.1, col="blue")
text(scale*Xstruc, ypos, names(Xstruc), pos=2, col="blue")
xpos <- usr[2,1] - ( 1 + 1:3)/10
arrows(xpos, 0, xpos, scale*Ystruc, angle=10, len=0.1, col="darkgreen")
text(xpos, scale*Ystruc, names(Ystruc), pos=1, col="darkgreen")
```

 predictor. names Get predictor names from a lm-like model

Description

Get predictor names from a lm-like model

Usage

```
predictor.names(model, ...)
## Default S3 method:
predictor.names(model, ...)
```


Arguments

model	Model object
\ldots	other arguments (ignored)

Value

A character vector of variable names

Methods (by class)

- predictor.names(default): "default" method.

Examples

\#none

Description

Calculates indices of redundancy (Stewart \& Love, 1968) from a canonical correlation analysis. These give the proportion of variances of the variables in each set (X and Y) which are accounted for by the variables in the other set through the canonical variates.

Usage

```
redundancy(object, ...)
## S3 method for class 'cancor.redundancy'
print(x, digits = max(getOption("digits") - 3, 3), ...)
```


Arguments

object A "cancor" object
... Other arguments
x A "cancor.redundancy" for the print method.
digits \quad Number of digits to print

Details

The term "redundancy analysis" has a different interpretation and implementation in the environmental ecology literature, such as the vegan. In that context, each Y_{i} variable is regressed separately on the predictors in X, to give fitted values $\widehat{Y}=\left[\widehat{Y}_{1}, \widehat{Y}_{2}, \ldots\right.$ Then a PCA of \widehat{Y} is carried out to determine a reduced-rank structure of the predictions.

Value

An object of class "cancor. redundancy", a list with the following 5 components:
Xcan.redun Canonical redundancies for the X variables, i.e., the total fraction of X variance accounted for by the Y variables through each canonical variate.
Ycan.redun Canonical redundancies for the Y variables
X.redun Total canonical redundancy for the X variables, i.e., the sum of Xcan.redun.
Y.redun Total canonical redundancy for the Y variables
set. names names for the X and Y sets of variables

Functions

- print(cancor.redundancy): print() method for "cancor. redundancy" objects.

Author(s)

Michael Friendly

References

Muller K. E. (1981). Relationships between redundancy analysis, canonical correlation, and multivariate regression. Psychometrika, 46(2), 139-42.
Stewart, D. and Love, W. (1968). A general canonical correlation index. Psychological Bulletin, 70, 160-163.
Brainder, "Redundancy in canonical correlation analysis", https://brainder.org/2019/12/27/ redundancy-in-canonical-correlation-analysis/

See Also

cancor

Examples

```
data(Rohwer, package="heplots")
X <- as.matrix(Rohwer[,6:10]) # the PA tests
Y <- as.matrix(Rohwer[,3:5]) # the aptitude/ability variables
cc <- cancor(X, Y, set.names=c("PA", "Ability"))
redundancy (cc)
##
## Redundancies for the PA variables & total X canonical redundancy
##
## Xcan1 Xcan2 Xcan3 total XIY
## 0.17342 0.04211 0.00797 0.22350
##
## Redundancies for the Ability variables & total Y canonical redundancy
##
## Ycan1 Ycan2 Ycan3 total Y|X
## 0.2249 0.0369 0.0156 0.2774
```

varOrder
Order variables according to canonical structure or other criteria

Description

The varOrder function implements some features of "effect ordering" (Friendly \& Kwan (2003) for variables in a multivariate data display to make the displayed relationships more coherent.
This can be used in pairwise HE plots, scatterplot matrices, parallel coordinate plots, plots of multivariate means, and so forth.

For a numeric data frame, the most useful displays often order variables according to the angles of variable vectors in a 2D principal component analysis or biplot. For a multivariate linear model, the analog is to use the angles of the variable vectors in a 2 D canonical discriminant biplot.

Usage

```
varOrder(x, ...)
## S3 method for class 'mlm'
varOrder(
    x,
    term,
    variables,
    type = c("can", "pc"),
    method = c("angles", "dim1", "dim2", "alphabet", "data", "colmean"),
    names = FALSE,
    descending = FALSE,
    )
    ## S3 method for class 'data.frame'
    varOrder(
        x,
        variables,
        method = c("angles", "dim1", "dim2", "alphabet", "data", "colmean"),
        names = FALSE,
        descending = FALSE,
    )
    ## Default S3 method:
    varOrder(x, ...)
```


Arguments

x
... Arguments passed to methods
term For the mlm method, one term in the model for which the canonical structure coefficients are found.
variables indices or names of the variables to be ordered; defaults to all response variables an MLM or all numeric variables in a data frame.
type For an MLM, type="can" uses the canonical structure coefficients for the given term; type="pc" uses the principal component variable eigenvectors.
method One of c("angles", "dim1", "dim2", "alphabet", "data", "colmean") giving the effect ordering method.
"angles" Orders variables according to the angles their vectors make with dimensions 1 and 2, counter-clockwise starting from the lower-left quadrant in a 2 D biplot or candisc display.
"dim1" Orders variables in increasing order of their coordinates on dimension 1
"dim2" Orders variables in increasing order of their coordinates on dimension 2
"alphabet" Orders variables alphabetically
"data" Uses the order of the variables in the data frame or the list of responses in the MLM
"colmean" Uses the order of the column means of the variables in the data frame or the list of responses in the MLM
names logical; if TRUE the effect ordered names of the variables are returned; otherwise, their indices in variables are returned.
descending If TRUE, the ordered result is reversed to a descending order.

Value

A vector of integer indices of the variables or a character vector of their names.

Methods (by class)

- varOrder (mlm): "mlm" method.
- varOrder (data.frame): "data.frame" method.
- varOrder(default): "default" method.

Author(s)

Michael Friendly

References

Friendly, M. \& Kwan, E. (2003). Effect Ordering for Data Displays, Computational Statistics and Data Analysis, 43, 509-539. doi:10.1016/S01679473(02)002906

Examples

```
data(Wine, package="candisc")
Wine.mod <- lm(as.matrix(Wine[, -1]) ~ Cultivar, data=Wine)
Wine.can <- candisc(Wine.mod)
plot(Wine.can, ellipse=TRUE)
# pairs.mlm HE plot, variables in given order
pairs(Wine.mod, fill=TRUE, fill.alpha=.1, var.cex=1.5)
order <- varOrder(Wine.mod)
pairs(Wine.mod, variables=order, fill=TRUE, fill.alpha=.1, var.cex=1.5)
```

```
vecscale Scale vectors to fill the current plot
```


Description

Calculates a scale factor so that a collection of vectors nearly fills the current plot, that is, the longest vector does not extend beyond the plot region.

Usage

```
    vecscale(
        vectors,
        bbox = matrix(par("usr"), 2, 2),
        origin = c(0, 0),
        factor = 0.95
    )
```


Arguments

vectors a two-column matrix giving the end points of a collection of vectors
bbox the bounding box of the containing plot region within which the vectors are to be plotted
origin origin of the vectors
factor maximum length of the rescaled vectors relative to the maximum possible

Value

scale factor, the multiplier of the vectors

Author(s)

Michael Friendly

See Also

vectors

Examples

```
bbox <- matrix(c(-3, 3, -2, 2), 2, 2)
colnames(bbox) <- c("x","y")
rownames(bbox) <- c("min", "max")
bbox
vecs <- matrix( runif(10, -1, 1), 5, 2)
plot(bbox)
```

```
arrows(0, 0, vecs[,1], vecs[,2], angle=10, col="red")
(s <- vecscale(vecs))
arrows(0, 0, s*vecs[,1], s*vecs[,2], angle=10)
```

vectors Draw Labeled Vectors in $2 D$ or $3 D$

Description

Graphics utility functions to draw vectors from an origin to a collection of points (using arrows in 2D or lines3d in 3D) with labels for each (using text or texts3d).

Usage

```
    vectors(
        x,
        origin = c(0, 0),
        labels = rownames(x),
        scale = 1,
        col = "blue",
        lwd = 1,
        cex = 1,
        length = 0.1,
        angle = 13,
        pos = NULL,
    )
```


Arguments

x
origin Starting point(s) for the vectors
labels Labels for the vectors
scale A multiplier for the length of each vector
col color(s) for the vectors.
lwd line width(s) for the vectors.
cex color(s) for the vectors.
length For vectors, length of the edges of the arrow head (in inches).
angle For vectors, angle from the shaft of the arrow to the edge of the arrow head.
pos For vectors, position of the text label relative to the vector head. If pos==NULL, labels are positioned labels outside, relative to arrow ends.
$\ldots \quad$ other graphical parameters, such as lty, xpd, \ldots

Details

The graphical parameters col, lty and lwd can be vectors of length greater than one and will be recycled if necessary

Value

None

Author(s)

Michael Friendly

See Also

arrows, text, segments
lines3d, texts3d

Examples

```
plot(c(-3, 3), c(-3,3), type="n")
X <- matrix(rnorm(10), ncol=2)
rownames(X) <- LETTERS[1:5]
vectors(X, scale=2, col=palette())
```

Wilks Wilks Lambda Tests for Canonical Correlations

Description

Tests the sequential hypotheses that the i th canonical correlation and all that follow it are zero,

$$
\rho_{i}=\rho_{i+1}=\cdots=0
$$

Usage

Wilks(object, ...)
\#\# S3 method for class 'cancor'
Wilks(object, ...)
\#\# S3 method for class 'candisc'
Wilks(object, ...)

Arguments

object An object of class "cancor""\} or \code\{"candisc""
... Other arguments passed to methods (not used)

Details

Wilks' Lambda values are calculated from the eigenvalues and converted to F statistics using Rao's approximation.

Value

A data.frame (of class "anova") containing the test statistics

Methods (by class)

- Wilks (cancor): "cancor" method.
- Wilks(candisc): print() method for "candisc" objects.

Author(s)

Michael Friendly

References

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. London: Academic Press.

See Also

```
cancor, ~~~
```


Examples

```
data(Rohwer, package="heplots")
X <- as.matrix(Rohwer[,6:10]) # the PA tests
Y <- as.matrix(Rohwer[,3:5]) # the aptitude/ability variables
cc <- cancor(X, Y, set.names=c("PA", "Ability"))
Wilks(cc)
iris.mod <- lm(cbind(Petal.Length, Sepal.Length, Petal.Width, Sepal.Width) ~ Species, data=iris)
iris.can <- candisc(iris.mod, data=iris)
Wilks(iris.can)
```

Wine Chemical composition of three cultivars of wine

Description

These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines.

Format

A data frame with 178 observations on the following 14 variables.
Cultivar a factor with levels barolo grignolino barbera
Alcohol a numeric vector
MalicAcid a numeric vector
Ash a numeric vector
AlcAsh a numeric vector, Alkalinity of ash
Mg a numeric vector, Magnesium
Phenols a numeric vector, Total phenols
Flav a numeric vector, Flavanoids
NonFlavPhenols a numeric vector
Proa a numeric vector, Proanthocyanins
Color a numeric vector, color intensity
Hue a numeric vector
OD a numeric vector, OD280/OD315 of diluted wines
Proline a numeric vector

Details

This data set is a classic in the machine learning literature as an easy high-D classification problem, but is also of interest for examples of MANOVA and discriminant analysis.
The precise definitions of these variables is unknown: units, how they were measured, etc.

Source

This data set was obtained from the UCI Machine Learning Repository, http://archive.ics.uci .edu/ml/datasets/Wine This page references a large number of papers that use this data set to compare different methods.

References

In R, a comparable data set is contained in the ggbiplot package.

Examples

```
data(Wine)
str(Wine)
#summary(Wine)
Wine.mlm <- lm(as.matrix(Wine[, -1]) ~ Cultivar, data=Wine)
Wine.can <- candisc(Wine.mlm)
Wine.can
plot(Wine.can, ellipse=TRUE)
plot(Wine.can, which=1)
```

Wolves Wolf skulls

Description

Skull morphometric data on Rocky Mountain and Arctic wolves (Canis Lupus L.) taken from Morrison (1990), originally from Jolicoeur (1959).

Format

A data frame with 25 observations on the following 11 variables.
group a factor with levels ar:f ar:m rm:f rm:m, comprising the combinations of location and sex
location a factor with levels ar=Arctic, rm=Rocky Mountain
sex a factor with levels $f=$ female, $m=m a l e$
x 1 palatal length, a numeric vector
$\times 2$ postpalatal length, a numeric vector
x3 zygomatic width, a numeric vector
$x 4$ palatal width outside first upper molars, a numeric vector
x5 palatal width inside second upper molars, a numeric vector
x6 postglenoid foramina width, a numeric vector
x7 interorbital width, a numeric vector
x 8 braincase width, a numeric vector
$x 9$ crown length, a numeric vector

Details

All variables are expressed in millimeters.
The goal was to determine how geographic and sex differences among the wolf populations are determined by these skull measurements. For MANOVA or (canonical) discriminant analysis, the factors group or location and sex provide alternative parameterizations.

Source

Morrison, D. F. Multivariate Statistical Methods, (3rd ed.), 1990. New York: McGraw-Hill, p. 288-289.

References

Jolicoeur, P. "Multivariate geographical variation in the wolf Canis lupis L.", Evolution, XIII, 283299.

Examples

```
data(Wolves)
# using group
wolf.mod <-lm(cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9) ~ group, data=Wolves)
car::Anova(wolf.mod)
wolf.can <-candisc(wolf.mod)
plot(wolf.can)
heplot(wolf.can)
# using location, sex
wolf.mod2 <-lm(cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9) ~ location*sex, data=Wolves)
car::Anova(wolf.mod2)
wolf.can2 <-candiscList(wolf.mod2)
plot(wolf.can2)
```


Index

```
* MANOVA
    Grass,18
    Wine, 39
* MMRA
    HSB, 26
* aplot
    vectors, 36
* cancor
    HSB, 26
* candisc
    Grass,18
    Wine, 39
* datasets
    Grass,18
    HSB, }2
    Wine, 39
    Wolves,40
* hplot
    candisc, 10
    candiscList, 15
    heplot.cancor, }1
    heplot.candisc, 22
    heplot.candiscList, 25
    plot.cancor, 27
* htest
    Wilks, 37
* manip
    dataIndex, 17
    varOrder, 32
    vecscale, 35
* multivariate
        cancor,4
        candisc,10
        candisc-package, 2
        candiscList, 15
        heplot.cancor, 19
        heplot.candisc, 22
        heplot.candiscList, 25
        redundancy, 31
```

varOrder, 32

* package
candisc-package, 2
* utilities
dataIndex, 17
arrows, 36, 37
aspect3d, 24
can_lm, 16
cancor, 3, 4, 4, 8, 17, 21, 29, 32, 38
candisc, $4,8,10,16,17,24,26$
candisc-package, 2
candiscList, $14,15,24,26$
cc, 8
cca, 8
coef. cancor (cancor), 4
coef. candisc (candisc), 10
cov.wt, 5
dataEllipse, 28, 29
dataIndex, 17
Grass, 18
heplot, $4,14,16,21,23,24,26$
heplot.cancor, 3, 6, 8, 19
heplot.candisc, 3, 19, 21, 22
heplot.candiscList, 25
heplot3d, 14, 16, 23, 24, 26
heplot3d.cancor, 3
heplot3d.cancor (heplot.cancor), 19
heplot3d.candisc, 3
heplot3d.candisc (heplot.candisc), 22
heplot3d.candiscList
(heplot.candiscList), 25
heplots, 4,8
HSB, 26
linearHypothesis, 21
lines3d, 36, 37

```
loessLine, 28, 29
palette,11
plot.cancor, 3, 8, 21,27
plot.candisc, 3
plot.candisc (candisc), 10
plot.candiscList(candiscList), 15
predictor.names, 30
print.cancor (cancor),4
print.cancor.redundancy (redundancy), 31
print.candisc (candisc), 10
print.candiscList (candiscList), 15
redundancy, 8, 31
scores (cancor), 4
segments, }3
showLabels, }2
summary.cancor (cancor), 4
summary.candisc (candisc), 10
summary.candiscList (candiscList), }1
text, 36, 37
texts3d, 36,37
varOrder, 3, 32
vecscale, 35
vectors, 35, 36
vectors3d (vectors), 36
Wilks,37
Wine, 39
Wolves,40
```

