
Package ‘hydroGOF’
May 9, 2024

Type Package

Title Goodness-of-Fit Functions for Comparison of Simulated and
Observed Hydrological Time Series

Version 0.6-0

Maintainer Mauricio Zambrano-Bigiarini <mzb.devel@gmail.com>

Description
S3 functions implementing both statistical and graphical goodness-of-fit measures between ob-
served and simulated values, mainly oriented to be used during the calibration, validation, and ap-
plication of hydrological models. Missing values in observed and/or simulated values can be re-
moved before computations. Comments / questions / collaboration of any kind are very welcomed.

License GPL (>= 2)

Depends R (>= 2.10.0), zoo (>= 1.7-2)

Imports hydroTSM (>= 0.5-0), xts (>= 0.8-2), methods, stats

Suggests knitr, rmarkdown

VignetteBuilder knitr

URL https://github.com/hzambran/hydroGOF

MailingList https://stat.ethz.ch/mailman/listinfo/r-sig-ecology

BugReports https://github.com/hzambran/hydroGOF/issues

LazyLoad yes

NeedsCompilation no

Repository CRAN

Author Mauricio Zambrano-Bigiarini [aut, cre, cph]
(<https://orcid.org/0000-0002-9536-643X>)

Date/Publication 2024-05-08 23:20:02 UTC

R topics documented:
hydroGOF-package . 3
APFB . 8

1

https://github.com/hzambran/hydroGOF
https://github.com/hzambran/hydroGOF/issues
https://orcid.org/0000-0002-9536-643X

2 R topics documented:

br2 . 12
cp . 17
d . 22
dr . 26
EgaEnEstellaQts . 31
ggof . 32
gof . 40
HFB . 49
KGE . 53
KGEkm . 60
KGElf . 68
KGEnp . 73
mae . 78
md . 83
me . 86
mNSE . 90
mse . 94
nrmse . 98
NSE . 103
pbias . 107
pbiasfdc . 112
pfactor . 116
plot2 . 118
plotbands . 121
plotbandsonly . 124
R2 . 125
rd . 130
rfactor . 134
rmse . 137
rNSE . 141
rPearson . 145
rSD . 150
rSpearman . 154
rsr . 158
sKGE . 162
ssq . 168
ubRMSE . 171
valindex . 175
ve . 176
wNSE . 180
wsNSE . 185

Index 191

hydroGOF-package 3

hydroGOF-package Goodness-of-fit (GoF) functions for numerical and graphical compar-
ison of simulated and observed time series, mainly focused on hydro-
logical modelling.

Description

S3 functions implementing both statistical and graphical goodness-of-fit measures between ob-
served and simulated values, to be used during the calibration, validation, and application of hy-
drological models.

Missing values in observed and/or simulated values can be removed before computations.

Details

Package: hydroGOF
Type: Package
Version: 0.6-0
Date: 2024-05-08
License: GPL >= 2
LazyLoad: yes
Packaged: Wed 08 May 2024 05:13:53 PM -04 ; MZB
BuiltUnder: R version 4.4.0 (2024-04-24) – "Puppy Cup" ;x86_64-pc-linux-gnu (64-bit)

Quantitative statistics included in this package are:

me Mean Error
mae Mean Absolute Error
mse Mean Squared Error
rmse Root Mean Square Error
ubRMSE Unbiased Root Mean Square Error
nrmse Normalized Root Mean Square Error
pbias Percent Bias
rsr Ratio of RMSE to the Standard Deviation of the Observations
rSD Ratio of Standard Deviations
NSE Nash-Sutcliffe Efficiency
mNSE Modified Nash-Sutcliffe Efficiency
rNSE Relative Nash-Sutcliffe Efficiency
wNSE Weighted Nash-Sutcliffe Efficiency
wsNSE Weighted Seasonal Nash-Sutcliffe Efficiency
d Index of Agreement
dr Refined Index of Agreement
md Modified Index of Agreement
rd Relative Index of Agreement

4 hydroGOF-package

cp Persistence Index
rPearson Pearson correlation coefficient
R2 Coefficient of determination
br2 R2 multiplied by the coefficient of the regression line between sim and obs
VE Volumetric efficiency
KGE Kling-Gupta efficiency
KGElf Kling-Gupta Efficiency for low values
KGEnp Non-parametric version of the Kling-Gupta Efficiency
KGEkm Knowable Moments Kling-Gupta Efficiency
sKGE Split Kling-Gupta Efficiency
APFB Annual Peak Flow Bias
HFB High Flow Bias
rSpearman Spearman’s rank correlation coefficient
ssq Sum of the Squared Residuals
pbiasfdc PBIAS in the slope of the midsegment of the flow duration curve
pfactor P-factor
rfactor R-factor
———————————————————————————————————-

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

Maintainer: Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. (2009), Assessing the impact of climate
change on water resources in Iran, Water Resources Research, 45(10), W10,434, doi:10.1029/2008WR007615.

Abbaspour, K.C., Yang, J. ; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J. ; Zobrist, J.; Srini-
vasan, R. (2007), Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed
using SWAT, Journal of Hydrology, 333(2-4), 413-430, doi:10.1016/j.jhydrol.2006.09.014.

Box, G.E. (1966). Use and abuse of regression. Technometrics, 8(4), 625-629. doi:10.1080/00401706.1966.10490407.

Barrett, J.P. (1974). The coefficient of determination-some limitations. The American Statistician,
28(1), 19-20. doi:10.1080/00031305.1974.10479056.

Chai, T.; Draxler, R.R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?
- Arguments against avoiding RMSE in the literature, Geoscientific Model Development, 7, 1247-
1250. doi:10.5194/gmd-7-1247-2014.

Cinkus, G.; Mazzilli, N.; Jourde, H.; Wunsch, A.; Liesch, T.; Ravbar, N.; Chen, Z.; and Gold-
scheider, N. (2023). When best is the enemy of good - critical evaluation of performance criteria in
hydrological models. Hydrology and Earth System Sciences 27, 2397-2411, doi:10.5194/hess-27-
2397-2023.

Criss, R. E.; Winston, W. E. (2008), Do Nash values have value? Discussion and alternate proposals.
Hydrological Processes, 22: 2723-2725. doi:10.1002/hyp.7072.

Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. (2010). Performance metrics for soil mois-
ture retrievals and application requirements. Journal of Hydrometeorology, 11(3), 832-840. doi:
10.1175/2010JHM1223.1.

hydroGOF-package 5

Fowler, K.; Coxon, G.; Freer, J.; Peel, M.; Wagener, T.; Western, A.; Woods, R.; Zhang, L. (2018).
Simulating runoff under changing climatic conditions: A framework for model improvement. Water
Resources Research, 54(12), 812-9832. doi:10.1029/2018WR023989.

Garcia, F.; Folton, N.; Oudin, L. (2017). Which objective function to calibrate rainfall-runoff mod-
els for low-flow index simulations?. Hydrological sciences journal, 62(7), 1149-1166. doi:10.1080/02626667.2017.1308511.

Garrick, M.; Cunnane, C.; Nash, J.E. (1978). A criterion of efficiency for rainfall-runoff models.
Journal of Hydrology 36, 375-381. doi:10.1016/0022-1694(78)90155-5.

Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. (2009). Decomposition of the mean squared
error and NSE performance criteria: Implications for improving hydrological modelling. Journal of
hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003. ISSN 0022-1694.

Gupta, H.V.; Kling, H. (2011). On typical range, sensitivity, and normalization of Mean Squared Er-
ror and Nash-Sutcliffe Efficiency type metrics. Water Resources Research, 47(10). doi:10.1029/2011WR010962.

Hahn, G.J. (1973). The coefficient of determination exposed. Chemtech, 3(10), 609-612. Aailable
online at: https://www2.hawaii.edu/~cbaajwe/Ph.D.Seminar/Hahn1973.pdf.

Hodson, T.O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use
them or not, Geoscientific Model Development, 15, 5481-5487, doi:10.5194/gmd-15-5481-2022.

Hundecha, Y., Bardossy, A. (2004). Modeling of the effect of land use changes on the runoff
generation of a river basin through parameter regionalization of a watershed model. Journal of
hydrology, 292(1-4), 281-295. doi:10.1016/j.jhydrol.2004.01.002.

Kitanidis, P.K.; Bras, R.L. (1980). Real-time forecasting with a conceptual hydrologic model. 2.
Applications and results. Water Resources Research, Vol. 16, No. 6, pp. 1034:1044. doi:10.1029/WR016i006p01034.

Kling, H.; Fuchs, M.; Paulin, M. (2012). Runoff conditions in the upper Danube basin under an en-
semble of climate change scenarios. Journal of Hydrology, 424, 264-277, doi:10.1016/j.jhydrol.2012.01.011.

Knoben, W.J.; Freer, J.E.; Woods, R.A. (2019). Inherent benchmark or not? Comparing Nash-
Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-
4331. doi:10.5194/hess-23-4323-2019.

Krause, P.; Boyle, D.P.; Base, F. (2005). Comparison of different efficiency criteria for hydrological
model assessment, Advances in Geosciences, 5, 89-97. doi:10.5194/adgeo-5-89-2005.

Krstic, G.; Krstic, N.S.; Zambrano-Bigiarini, M. (2016). The br2-weighting Method for Estimating
the Effects of Air Pollution on Population Health. Journal of Modern Applied Statistical Methods,
15(2), 42. doi:10.22237/jmasm/1478004000

Legates, D.R.; McCabe, G. J. Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in Hy-
drologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241. doi:10.1029/1998WR900018.

Ling, X.; Huang, Y.; Guo, W.; Wang, Y.; Chen, C.; Qiu, B.; Ge, J.; Qin, K.; Xue, Y.; Peng,
J. (2021). Comprehensive evaluation of satellite-based and reanalysis soil moisture products us-
ing in situ observations over China. Hydrology and Earth System Sciences, 25(7), 4209-4229.
doi:10.5194/hess-25-4209-2021.

Mizukami, N.; Rakovec, O.; Newman, A.J.; Clark, M.P.; Wood, A.W.; Gupta, H.V.; Kumar, R.:
(2019). On the choice of calibration metrics for "high-flow" estimation using hydrologic models,
Hydrology Earth System Sciences 23, 2601-2614, doi:10.5194/hess-23-2601-2019.

https://www2.hawaii.edu/~cbaajwe/Ph.D.Seminar/Hahn1973.pdf

6 hydroGOF-package

Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. (2007).
Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.
Transactions of the ASABE. 50(3):885-900

Nash, J.E. and Sutcliffe, J.V. (1970). River flow forecasting through conceptual models. Part 1: a
discussion of principles, Journal of Hydrology 10, pp. 282-290. doi:10.1016/0022-1694(70)90255-
6.

Pearson, K. (1920). Notes on the history of correlation. Biometrika, 13(1), 25-45. doi:10.2307/2331722.

Pfannerstill, M.; Guse, B.; Fohrer, N. (2014). Smart low flow signature metrics for an improved
overall performance evaluation of hydrological models. Journal of Hydrology, 510, 447-458. doi:10.1016/j.jhydrol.2013.12.044.

Pizarro, A.; Jorquera, J. (2024). Advancing objective functions in hydrological modelling: Inte-
grating knowable moments for improved simulation accuracy. Journal of Hydrology, 634, 131071.
doi:10.1016/j.jhydrol.2024.131071.

Pool, S.; Vis, M.; Seibert, J. (2018). Evaluating model performance: towards a non-parametric
variant of the Kling-Gupta efficiency. Hydrological Sciences Journal, 63(13-14), pp.1941-1953.
doi:/10.1080/02626667.2018.1552002.

Pushpalatha, R.; Perrin, C.; Le Moine, N.; Andreassian, V. (2012). A review of efficiency criteria
suitable for evaluating low-flow simulations. Journal of Hydrology, 420, 171-182. doi:10.1016/j.jhydrol.2011.11.055.

Santos, L.; Thirel, G.; Perrin, C. (2018). Pitfalls in using log-transformed flows within the KGE
criterion. doi:10.5194/hess-22-4583-2018.

Schaefli, B., Gupta, H. (2007). Do Nash values have value?. Hydrological Processes 21, 2075-2080.
doi:10.1002/hyp.6825.

Schober, P.; Boer, C.; Schwarte, L.A. (2018). Correlation coefficients: appropriate use and inter-
pretation. Anesthesia and Analgesia, 126(5), 1763-1768. doi:10.1213/ANE.0000000000002864.

Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. (2008b), Estimation of freshwater availability
in the West African sub-continent using the SWAT hydrologic model, Journal of Hydrology, 352(1-
2), 30, doi:10.1016/j.jhydrol.2007.12.025

Sorooshian, S., Q. Duan, and V. K. Gupta. (1993). Calibration of rainfall-runoff models: Applica-
tion of global optimization to the Sacramento Soil Moisture Accounting Model, Water Resources
Research, 29 (4), 1185-1194, doi:10.1029/92WR02617.

Spearman, C. (1961). The Proof and Measurement of Association Between Two Things. In J. J.
Jenkins and D. G. Paterson (Eds.), Studies in individual differences: The search for intelligence (pp.
45-58). Appleton-Century-Crofts. doi:10.1037/11491-005

Tang, G.; Clark, M.P.; Papalexiou, S.M. (2021). SC-earth: a station-based serially complete earth
dataset from 1950 to 2019. Journal of Climate, 34(16), 6493-6511. doi:10.1175/JCLI-D-21-0067.1.

Yapo P.O.; Gupta H.V.; Sorooshian S. (1996). Automatic calibration of conceptual rainfall-runoff
models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23-48. doi:10.1016/0022-
1694(95)02918-4

Yilmaz, K.K., Gupta, H.V. ; Wagener, T. (2008), A process-based diagnostic approach to model
evaluation: Application to the NWS distributed hydrologic model, Water Resources Research, 44,
W09417, doi:10.1029/2007WR006716.

Willmott, C.J. (1981). On the validation of models. Physical Geography, 2, 184–194. doi:10.1080/02723646.1981.10642213.

Willmott, C.J. (1984). On the evaluation of model performance in physical geography. Spatial
Statistics and Models, G. L. Gaile and C. J. Willmott, eds., 443-460. doi:10.1007/978-94-017-
3048-8_23.

hydroGOF-package 7

Willmott, C.J.; Ackleson, S.G. Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell,
J.; Rowe, C.M. (1985), Statistics for the Evaluation and Comparison of Models, J. Geophys. Res.,
90(C5), 8995-9005. doi:10.1029/JC090iC05p08995.

Willmott, C.J.; Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root
mean square error (RMSE) in assessing average model performance, Climate Research, 30, 79-82,
doi:10.3354/cr030079.

Willmott, C.J.; Matsuura, K.; Robeson, S.M. (2009). Ambiguities inherent in sums-of-squares-
based error statistics, Atmospheric Environment, 43, 749-752, doi:10.1016/j.atmosenv.2008.10.005.

Willmott, C.J.; Robeson, S.M.; Matsuura, K. (2012). A refined index of model performance. Inter-
national Journal of climatology, 32(13), pp.2088-2094. doi:10.1002/joc.2419.

Willmott, C.J.; Robeson, S.M.; Matsuura, K.; Ficklin, D.L. (2015). Assessment of three dimen-
sionless measures of model performance. Environmental Modelling & Software, 73, pp.167-174.
doi:10.1016/j.envsoft.2015.08.012

Zambrano-Bigiarini, M.; Bellin, A. (2012). Comparing goodness-of-fit measures for calibration
of models focused on extreme events. EGU General Assembly 2012, Vienna, Austria, 22-27 Apr
2012, EGU2012-11549-1.

See Also

https://CRAN.R-project.org/package=hydroPSO
https://CRAN.R-project.org/package=hydroTSM

Examples

obs <- 1:100
sim <- obs

Numerical goodness of fit
gof(sim,obs)

Reverting the order of simulated values
sim <- 100:1
gof(sim,obs)

Not run:
ggof(sim, obs)

End(Not run)

##################
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
require(zoo)
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to observations
sim <- obs

Getting the numeric goodness-of-fit measures for the "best" (unattainable) case

https://CRAN.R-project.org/package=hydroPSO
https://CRAN.R-project.org/package=hydroTSM

8 APFB

gof(sim=sim, obs=obs)

Randomly changing the first 2000 elements of 'sim', by using a normal
distribution with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)

Getting the new numeric goodness of fit
gof(sim=sim, obs=obs)

Graphical representation of 'obs' vs 'sim', along with the numeric
goodness-of-fit measures
Not run:
ggof(sim=sim, obs=obs)

End(Not run)

APFB Annual Peak Flow Bias

Description

Annual peak flow bias between sim and obs, with treatment of missing values.

This function was prposed by Mizukami et al. (2019) to identify differences in high (streamflow)
values. See Details.

Usage

APFB(sim, obs, ...)

Default S3 method:
APFB(sim, obs, na.rm=TRUE, start.month=1, out.PerYear=FALSE,

fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'data.frame'
APFB(sim, obs, na.rm=TRUE, start.month=1, out.PerYear=FALSE,

fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'matrix'
APFB(sim, obs, na.rm=TRUE, start.month=1, out.PerYear=FALSE,

fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'zoo'

APFB 9

APFB(sim, obs, na.rm=TRUE, start.month=1, out.PerYear=FALSE,
fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values
obs numeric, zoo, matrix or data.frame with observed values
na.rm a logical value indicating whether ’NA’ should be stripped before the computa-

tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

start.month [OPTIONAL]. Only used when the (hydrological) year of interest is different
from the calendar year.
numeric in [1:12] indicating the starting month of the (hydrological) year. Nu-
meric values in [1, 12] represent months in [January, December]. By default
start.month=1.

out.PerYear logical, indicating whether the output of this function has to include the annual
peak flow bias obtained for the individual years or not.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.
epsilon.type argument used to define a numeric value to be added to both sim and obs before

applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

10 APFB

Details

The annual peak flow bias (APFB; Mizukami et al., 2019) is designed to drive the calibration of
hydrological models focused in the reproduction of high-flow events.

The high flow bias (APFB) ranges from 0 to Inf, with an optimal value of 0. Higher values of APFB
indicate stronger differences between the high values of sim and obs. Essentially, the closer to 0,
the more similar the high values of sim and obs are.

Value

If out.PerYear=FALSE: numeric with the mean annual peak flow bias between sim and obs. If sim
and obs are matrices, the output value is a vector, with the mean annual peak flow bias between
each column of sim and obs.

If out.PerYear=TRUE: a list of two elements:

APFB.value numeric with the mean annual peak flow bias between sim and obs. If sim and
obs are matrices, the output value is a vector, with the mean annual peak flow
bias between each column of sim and obs.

APFB.PerYear -) If sim and obs are not data.frame/matrix, the output is numeric, with the mean
annual peak flow bias obtained for the individual years between sim and obs.
-) If sim and obs are data.frame/matrix, this output is a data.frame, with the
mean annual peak flow bias obtained for the individual years between sim and
obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano-Bigiarini <mzb.devel@gmail.com>

References

Mizukami, N.; Rakovec, O.; Newman, A.J.; Clark, M.P.; Wood, A.W.; Gupta, H.V.; Kumar, R.:
(2019). On the choice of calibration metrics for "high-flow" estimation using hydrologic models,
Hydrology Earth System Sciences 23, 2601-2614, doi:10.5194/hess-23-2601-2019.

See Also

NSE, wNSE, wsNSE, HFB, gof, ggof

APFB 11

Examples

##################
Example 1: Looking at the difference between 'NSE', 'wNSE', and 'APFB'
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Simulated daily time series, created equal to the observed values and then
random noise is added only to high flows, i.e., those equal or higher than
the quantile 0.9 of the observed values.
sim <- obs
hQ.thr <- quantile(obs, probs=0.9, na.rm=TRUE)
hQ.index <- which(obs >= hQ.thr)
hQ.n <- length(hQ.index)
sim[hQ.index] <- sim[hQ.index] + rnorm(hQ.n, mean=mean(sim[hQ.index], na.rm=TRUE))

Traditional Nash-Sutcliffe eficiency
NSE(sim=sim, obs=obs)

Weighted Nash-Sutcliffe efficiency (Hundecha and Bardossy, 2004)
wNSE(sim=sim, obs=obs)

APFB (Garcia et al., 2017):
APFB(sim=sim, obs=obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'APFB' for the "best" (unattainable) case
APFB(sim=sim, obs=obs)

##################
Example 3: APFB for simulated values created equal to the observed values and then
random noise is added only to high flows, i.e., those equal or higher than
the quantile 0.9 of the observed values.

sim <- obs
hQ.thr <- quantile(obs, probs=0.9, na.rm=TRUE)
hQ.index <- which(obs >= hQ.thr)
hQ.n <- length(hQ.index)
sim[hQ.index] <- sim[hQ.index] + rnorm(hQ.n, mean=mean(sim[hQ.index], na.rm=TRUE))
ggof(sim, obs)

APFB(sim=sim, obs=obs)

##################

12 br2

Example 4: APFB for simulated values created equal to the observed values and then
random noise is added only to high flows, i.e., those equal or higher than
the quantile 0.9 of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

APFB(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
APFB(sim=lsim, obs=lobs)

##################
Example 5: APFB for simulated values created equal to the observed values and then
random noise is added only to high flows, i.e., those equal or higher than
the quantile 0.9 of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

APFB(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
APFB(sim=sim1, obs=obs1)

br2 br2

Description

Coefficient of determination (r2) multiplied by the slope of the regression line between sim and
obs, with treatment of missing values.

Usage

br2(sim, obs, ...)

Default S3 method:
br2(sim, obs, na.rm=TRUE, use.abs=FALSE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
br2(sim, obs, na.rm=TRUE, use.abs=FALSE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

br2 13

epsilon.value=NA)

S3 method for class 'matrix'
br2(sim, obs, na.rm=TRUE, use.abs=FALSE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
br2(sim, obs, na.rm=TRUE, use.abs=FALSE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm logical value indicating whether ’NA’ should be stripped before the computation
proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

use.abs logical value indicating whether the condition to select the formula used to com-
pute br2 should be ’b<=1’ or ’abs(b) <=1’.
Krausse et al. (2005) uses ’b<=1’ as condition, but strictly speaking this condi-
tion should be ’abs(b)<=1’. However, if your model simulations are somewhat
"close" to the observations, this condition should not have much impact on the
computation of ’br2’.
This argument was introduced in hydroGOF 0.4-0, following a comment by E.
White. Its default value is FALSE to ensure compatibility with previous versions
of hydroGOF.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth

14 br2

(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

br2 = |b|R2, b <= 1; br2 =
R2

|b|
, b > 1

A model that systematically over or under-predicts all the time will still result in "good" R2 (close to
1), even if all predictions were wrong (Krause et al., 2005). The br2 coefficient allows accounting
for the discrepancy in the magnitude of two signals (depicted by ’b’) as well as their dynamics
(depicted by R2)

Value

br2 between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the br2 between each column of
sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

The slope b is computed as the coefficient of the linear regression between sim and obs, forcing the
intercept be equal to zero.

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Krause, P.; Boyle, D.P.; Base, F. (2005). Comparison of different efficiency criteria for hydrological
model assessment, Advances in Geosciences, 5, 89-97. doi:10.5194/adgeo-5-89-2005.

br2 15

Krstic, G.; Krstic, N.S.; Zambrano-Bigiarini, M. (2016). The br2-weighting Method for Estimating
the Effects of Air Pollution on Population Health. Journal of Modern Applied Statistical Methods,
15(2), 42. doi:10.22237/jmasm/1478004000

See Also

R2, rPearson, rSpearman, cor, lm, gof, ggof

Examples

##################
Example 1:
Looking at the difference between r2 and br2 for a case with systematic
over-prediction of observed values
obs <- 1:10
sim1 <- 2*obs + 5
sim2 <- 2*obs + 25

The coefficient of determination is equal to 1 even if there is no one single
simulated value equal to its corresponding observed counterpart
r2 <- (cor(sim1, obs, method="pearson"))^2 # r2=1

'br2' effectively penalises the systematic over-estimation
br2(sim1, obs) # br2 = 0.3684211
br2(sim2, obs) # br2 = 0.1794872

ggof(sim1, obs)
ggof(sim2, obs)

Computing 'br2' without forcing the intercept be equal to zero
br2.2 <- r2/2 # br2 = 0.5

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'br2' for the "best" (unattainable) case
br2(sim=sim, obs=obs)

##################
Example 3: br2 for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').

16 br2

sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

br2(sim=sim, obs=obs)

##################
Example 4: br2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

br2(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
br2(sim=lsim, obs=lobs)

##################
Example 5: br2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

br2(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
br2(sim=lsim, obs=lobs)

##################
Example 6: br2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
br2(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
br2(sim=lsim, obs=lobs)

##################
Example 7: br2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50

cp 17

br2(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
br2(sim=lsim, obs=lobs)

##################
Example 8: br2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

br2(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
br2(sim=sim1, obs=obs1)

cp Coefficient of persistence

Description

Coefficient of persistence between sim and obs, with treatment of missing values.

Usage

cp(sim, obs, ...)

Default S3 method:
cp(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
cp(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
cp(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

18 cp

S3 method for class 'zoo'
cp(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

cp = 1−
∑N

i=2 (Si −Oi)
2∑N−1

i=1 (Oi+1 −Oi)
2

cp 19

Coefficient of persistence (Kitadinis and Bras, 1980; Corradini et al., 1986) is used to compare the
model performance against a simple model using the observed value of the previous day as the pre-
diction for the current day.

The coefficient of persistence compare the predictions of the model with the predictions obtained
by assuming that the process is a Wiener process (variance increasing linearly with time), in which
case, the best estimate for the future is given by the latest measurement (Kitadinis and Bras, 1980).

Persistence model efficiency is a normalized model evaluation statistic that quantifies the relative
magnitude of the residual variance (noise) to the variance of the errors obtained by the use of a
simple persistence model (Moriasi et al., 2007).

CP ranges from 0 to 1, with CP = 1 being the optimal value and it should be larger than 0.0 to
indicate a minimally acceptable model performance.

Value

Coefficient of persistence between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the coefficient of persistence be-
tween each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation.

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Kitanidis, P.K.; Bras, R.L. (1980). Real-time forecasting with a conceptual hydrologic model. 2.
Applications and results. Water Resources Research, Vol. 16, No. 6, pp. 1034:1044. doi:10.1029/WR016i006p01034.

Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. (2007).
Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.
Transactions of the ASABE. 50(3):885-900.

See Also

gof

20 cp

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
cp(sim, obs)

obs <- 1:10
sim <- 2:11
cp(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'cp' for the "best" (unattainable) case
cp(sim=sim, obs=obs)

##################
Example 3: cp for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

cp(sim=sim, obs=obs)

##################
Example 4: cp for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

cp(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
cp(sim=lsim, obs=lobs)

##################
Example 5: cp for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant

cp 21

during computations

cp(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
cp(sim=lsim, obs=lobs)

##################
Example 6: cp for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
cp(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
cp(sim=lsim, obs=lobs)

##################
Example 7: cp for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
cp(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
cp(sim=lsim, obs=lobs)

##################
Example 8: cp for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

cp(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
cp(sim=sim1, obs=obs1)

22 d

d Index of Agreement

Description

Index of Agreement between sim and obs, with treatment of missing values.

Usage

d(sim, obs, ...)

Default S3 method:
d(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
d(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
d(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
d(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the Nash-Sutcliffe efficiency.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

d 23

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying FUN.

It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.

Valid values of epsilon.type are:

1) "none": sim and obs are used by FUN without the addition of any nummeric
value.

2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying FUN, as described in Pushpalatha et
al. (2012).

3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying FUN.

4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying FUN.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

d = 1−
∑N

i=1 (Oi − Si)
2∑N

i=1 (
∣∣Si − Ō

∣∣+
∣∣Oi − Ō

∣∣)2

The Index of Agreement (d) developed by Willmott (1981) as a standardized measure of the degree
of model prediction error.

It is is dimensionless and varies between 0 and 1. A value of 1 indicates a perfect match, and 0
indicates no agreement at all (Willmott, 1981).

The index of agreement can detect additive and proportional differences in the observed and sim-
ulated means and variances; however, it is overly sensitive to extreme values due to the squared
differences (Legates and McCabe, 1999).

Value

Index of agreement between sim and obs.

If sim and obs are matrixes or data.frames, the returned value is a vector, with the index of agree-
ment between each column of sim and obs.

24 d

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Willmott, C.J. (1981). On the validation of models. Physical Geography, 2, 184–194. doi:10.1080/02723646.1981.10642213.

Willmott, C.J. (1984). On the evaluation of model performance in physical geography. Spatial
Statistics and Models, G. L. Gaile and C. J. Willmott, eds., 443-460. doi:10.1007/978-94-017-
3048-8_23.

Willmott, C.J.; Ackleson, S.G. Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell,
J.; Rowe, C.M. (1985), Statistics for the Evaluation and Comparison of Models, J. Geophys. Res.,
90(C5), 8995-9005. doi:10.1029/JC090iC05p08995.

Legates, D.R.; McCabe, G. J. Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in Hy-
drologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241. doi:10.1029/1998WR900018.

See Also

md, rd, dr, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
d(sim, obs)

obs <- 1:10
sim <- 2:11
d(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'd' for the "best" (unattainable) case
d(sim=sim, obs=obs)

d 25

##################
Example 3: d for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

d(sim=sim, obs=obs)

##################
Example 4: d for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

d(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
d(sim=lsim, obs=lobs)

##################
Example 5: d for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

d(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
d(sim=lsim, obs=lobs)

##################
Example 6: d for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
d(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
d(sim=lsim, obs=lobs)

26 dr

##################
Example 7: d for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
d(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
d(sim=lsim, obs=lobs)

##################
Example 8: d for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

d(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
d(sim=sim1, obs=obs1)

dr Refined Index of Agreement

Description

Refined Index of Agreement (dr) between sim and obs, with treatment of missing values.

Usage

dr(sim, obs, ...)

Default S3 method:
dr(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
dr(sim, obs, na.rm=TRUE, fun=NULL, ...,

dr 27

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
dr(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
dr(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the Nash-Sutcliffe efficiency.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying FUN.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by FUN without the addition of any nummeric
value.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying FUN, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying FUN.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying FUN.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)

28 dr

described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

c = 2

A =

N∑
i=1

|Si −Oi|

B = c

N∑
i=1

∣∣Oi − Ō
∣∣

dr = 1− A

B
;A ≤ B

dr = 1− B

A
;A > B

The Refined Index of Agreement (dr, Willmott et al., 2012) is a reformulation of the orginal Will-
mott’s index of agreement developed in the 1980s (Willmott, 1981; Willmott, 1984; Willmott et al.,
1985)

The Refined Index of Agreement (dr) is dimensionless, and it varies between -1 to 1 (in contrast to
the original d, which varies in [0, 1]).

The Refined Index of Agreement (dr) is monotonically related with the modified Nash-Sutcliffe
(E1) desribed in Legates and McCabe (1999).

In general, dr is more rationally related to model accuracy than are other existing indices (Willmott
et al., 2012; Willmott et al., 2015). It also is quite flexible, making it applicable to a wide range of
model-performance problems (Willmott et al., 2012)

Value

Refined Index of Agreement (dr) between sim and obs.

If sim and obs are matrixes or data.frames, the returned value is a vector, with the Refined Index of
Agreement (dr) between each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

dr 29

References

Willmott, C.J.; Robeson, S.M.; Matsuura, K. (2012). A refined index of model performance. Inter-
national Journal of climatology, 32(13), pp.2088-2094. doi:10.1002/joc.2419.

Willmott, C.J.; Robeson, S.M.; Matsuura, K.; Ficklin, D.L. (2015). Assessment of three dimen-
sionless measures of model performance. Environmental Modelling & Software, 73, pp.167-174.
doi:10.1016/j.envsoft.2015.08.012

Willmott, C.J. (1981). On the validation of models. Physical Geography, 2, 184–194. doi:10.1080/02723646.1981.10642213.

Willmott, C.J. (1984). On the evaluation of model performance in physical geography. Spatial
Statistics and Models, G. L. Gaile and C. J. Willmott, eds., 443-460. doi:10.1007/978-94-017-
3048-8_23.

Willmott, C.J.; Ackleson, S.G. Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell,
J.; Rowe, C.M. (1985), Statistics for the Evaluation and Comparison of Models, J. Geophys. Res.,
90(C5), 8995-9005. doi:10.1029/JC090iC05p08995.

See Also

d, md, rd, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
dr(sim, obs)

obs <- 1:10
sim <- 2:11
dr(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'dr' for the "best" (unattainable) case
dr(sim=sim, obs=obs)

##################
Example 3: dr for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').

30 dr

sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

dr(sim=sim, obs=obs)

##################
Example 4: dr for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

dr(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
dr(sim=lsim, obs=lobs)

##################
Example 5: dr for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

dr(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
dr(sim=lsim, obs=lobs)

##################
Example 6: dr for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
dr(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
dr(sim=lsim, obs=lobs)

##################
Example 7: dr for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50

EgaEnEstellaQts 31

dr(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
dr(sim=lsim, obs=lobs)

##################
Example 8: dr for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

dr(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
dr(sim=sim1, obs=obs1)

EgaEnEstellaQts Ega in "Estella" (Q071), ts with daily streamflows.

Description

Time series with daily streamflows of the Ega River (subcatchment of the Ebro River basin, Spain)
measured at the gauging station "Estella" (Q071), for the period 01/Jan/1961 to 31/Dec/1970

Usage

data(EgaEnEstellaQts)

Format

zoo object.

Source

Downloaded from: https://www.chebro.es. Last accessed [March 2010].
These data are intended to be used for research purposes only, being distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY.

https://www.chebro.es

32 ggof

ggof Graphical Goodness of Fit

Description

Graphical comparison between two vectors (numeric, ts or zoo), with several numerical goodness
of fit printed as a legend.
Missing values in observed and/or simulated values can removed before the computations.

Usage

ggof(sim, obs, na.rm = TRUE, dates, date.fmt = "%Y-%m-%d",
pt.style = "ts", ftype = "o", FUN,
stype="default", season.names=c("Winter", "Spring", "Summer", "Autumn"),
gof.leg = TRUE, digits=2,
gofs=c("ME", "MAE", "RMSE", "NRMSE", "PBIAS", "RSR", "rSD", "NSE", "mNSE",

"rNSE", "d", "md", "rd", "r", "R2", "bR2", "KGE", "VE"),
legend, leg.cex=1,
tick.tstep = "auto", lab.tstep = "auto", lab.fmt=NULL,
cal.ini=NA, val.ini=NA,
main, xlab = "Time", ylab=c("Q, [m3/s]"),
col = c("blue", "black"),
cex = c(0.5, 0.5), cex.axis=1.2, cex.lab=1.2,
lwd = c(1, 1), lty = c(1, 3), pch = c(1, 9), ...)

Arguments

sim numeric or zoo object with with simulated values

obs numeric or zoo object with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

dates character, factor, Date or POSIXct object indicating how to obtain the dates for
the corresponding values in the sim and obs time series
If dates is a character or factor, it is converted into Date/POSIXct class, using
the date format specified by date.fmt

date.fmt OPTIONAL. character indicating the format in which the dates are stored in
dates, cal.ini and val.ini. See format in as.Date. Default value is %Y-%m-%d
ONLY required when class(dates)=="character" or class(dates)=="factor"
or when cal.ini and/or val.ini is provided.

pt.style Character indicating if the 2 ts have to be plotted as lines or bars. When ftype
is NOT o, it only applies to the annual values. Valid values are:
-) ts : (default) each ts is plotted as a lines along the ’x’ axis
-) bar: both series are plotted as barplots.

ggof 33

ftype Character indicating how many plots are desired by the user. Valid values are:
-) o : only the original sim and obs time series are plotted
-) dm : it assumes that sim and obs are daily time series and Daily and Monthly
values are plotted
-) ma : it assumes that sim and obs are daily or monthly time series and Monthly
and Annual values are plotted
-) dma : it assumes that sim and obs are daily time series and Daily, Monthly
and Annual values are plotted
-) seasonal: seasonal values are plotted. See stype and season.names

FUN OPTIONAL, ONLY required when ftype is in c('dm', 'ma', 'dma', 'seasonal').
Function that have to be applied for transforming teh original ts into monthly,
annual or seasonal time step (e.g., for precipitation FUN MUST be sum, for
temperature and flow time series, FUN MUST be mean)

stype OPTIONAL, only used when ftype=seasonal.
character, indicating whath weather seasons will be used for computing the out-
put. Possible values are:
-) default => "winter"= DJF = Dec, Jan, Feb; "spring"= MAM = Mar, Apr,
May; "summer"= JJA = Jun, Jul, Aug; "autumn"= SON = Sep, Oct, Nov
-) FrenchPolynesia => "winter"= DJFM = Dec, Jan, Feb, Mar; "spring"= AM
= Apr, May; "summer"= JJAS = Jun, Jul, Aug, Sep; "autumn"= ON = Oct, Nov

season.names OPTIONAL, only used when ftype=seasonal.
character of length 4 indicating the names of each one of the weather seasons
defined by stype.These names are only used for plotting purposes

gof.leg logical, indicating if several numerical goodness of fit have to be computed be-
tween sim and obs, and plotted as a legend on the graph. If leg.gof=TRUE, then
x is considered as observed and y as simulated values (for some gof functions
this is important).

digits OPTIONAL, only used when leg.gof=TRUE. Numeric, representing the deci-
mal places used for rounding the goodness-of-fit indexes.

gofs character, with one or more strings indicating the goodness-of-fit measures to be
shown in the legend of the plot when gof.leg=TRUE.
Possible values when ftype!='seasonal' are in c("ME", "MAE", "MSE", "RMSE",
"NRMSE", "PBIAS", "RSR", "rSD", "NSE", "mNSE", "rNSE", "d", "md", "rd",
"cp", "r", "R2", "bR2", "KGE", "VE")
Possible values when ftype='seasonal' are in c("ME", "RMSE", "PBIAS",
"RSR", "NSE", "d", "R2", "KGE", "VE")

legend character of length 2 to appear in the legend.

leg.cex OPTIONAL. ONLY used when leg.gof=TRUE. Character expansion factor for
drawing the legend, *relative* to current ’par("cex")’. Used for text, and pro-
vides the default for ’pt.cex’ and ’title.cex’. Default value = 1

tick.tstep character, indicating the time step that have to be used for putting the ticks on the
time axis. Valid values are: auto, years, months,weeks, days, hours, minutes,
seconds.

lab.tstep character, indicating the time step that have to be used for putting the labels
on the time axis. Valid values are: auto, years, months,weeks, days, hours,
minutes, seconds.

34 ggof

lab.fmt Character indicating the format to be used for the label of the axis. See lab.fmt
in drawTimeAxis.

cal.ini OPTIONAL. Character, indicating the date in which the calibration period started.
When cal.ini is provided, all the values in obs and sim with dates previous
to cal.ini are SKIPPED from the computation of the goodness-of-fit measures
(when gof.leg=TRUE), but their values are still plotted, in order to examine if
the warming up period was too short, acceptable or too long for the chosen cal-
ibration period. In addition, a vertical red line in drawn at this date.

val.ini OPTIONAL. Character, the date in which the validation period started.
ONLY used for drawing a vertical red line at this date.

main character representing the main title of the plot.

xlab label for the ’x’ axis.

ylab label for the ’y’ axis.

col character, representing the colors of sim and obs

cex numeric, representing the values controlling the size of text and symbols of ’x’
and ’y’ with respect to the default

cex.axis numeric, representing the magnification to be used for the axis annotation rela-
tive to ’cex’. See par.

cex.lab numeric, representing the magnification to be used for x and y labels relative to
the current setting of ’cex’. See par.

lwd vector with the line width of sim and obs

lty numeric with the line type of sim and obs

pch numeric with the type of symbol for x and y. (e.g., 1: white circle; 9: white
rhombus with a cross inside)

... further arguments passed to or from other methods.

Details

Plots observed and simulated values in the same graph.

If gof.leg=TRUE, it computes the numerical values of:
’me’, ’mae’, ’rmse’, ’nrmse’, ’PBIAS’, ’RSR, ’rSD’, ’NSE’, ’mNSE’, ’rNSE’, ’d’, ’md, ’rd’, ’cp’,
’r’, ’r.Spearman’, ’R2’, ’bR2’, ’KGE’, ’VE’

Value

The output of the gof function is a matrix with one column only, and the following rows:

ME Mean Error

MAE Mean Absolute Error

MSE Mean Squared Error

RMSE Root Mean Square Error

ubRMSE Unbiased Root Mean Square Error

NRMSE Normalized Root Mean Square Error (-100% <= NRMSE <= 100%)

ggof 35

PBIAS Percent Bias (-Inf <= PBIAS <= Inf [%])

RSR Ratio of RMSE to the Standard Deviation of the Observations, RSR = rms /
sd(obs). (0 <= RSR <= +Inf)

rSD Ratio of Standard Deviations, rSD = sd(sim) / sd(obs)

NSE Nash-Sutcliffe Efficiency (-Inf <= NSE <= 1)

mNSE Modified Nash-Sutcliffe Efficiency (-Inf <= mNSE <= 1)

rNSE Relative Nash-Sutcliffe Efficiency (-Inf <= rNSE <= 1)

wNSE Weighted Nash-Sutcliffe Efficiency (-Inf <= wNSE <= 1)

wsNSE Weighted Seasonal Nash-Sutcliffe Efficiency (-Inf <= wsNSE <= 1)

d Index of Agreement (0 <= d <= 1)

dr Refined Index of Agreement (-1 <= dr <= 1)

md Modified Index of Agreement (0 <= md <= 1)

rd Relative Index of Agreement (0 <= rd <= 1)

cp Persistence Index (0 <= cp <= 1)

r Pearson Correlation coefficient (-1 <= r <= 1)

R2 Coefficient of Determination (0 <= R2 <= 1)

bR2 R2 multiplied by the coefficient of the regression line between sim and obs
(0 <= bR2 <= 1)

VE Volumetric efficiency between sim and obs
(-Inf <= VE <= 1)

KGE Kling-Gupta efficiency between sim and obs
(-Inf <= KGE <= 1)

KGElf Kling-Gupta Efficiency for low values between sim and obs
(-Inf <= KGElf <= 1)

KGEnp Non-parametric version of the Kling-Gupta Efficiency between sim and obs
(-Inf <= KGEnp <= 1)

KGEkm Knowable Moments Kling-Gupta Efficiency between sim and obs
(-Inf <= KGEnp <= 1)

The following outputs are only produced when both sim and obs are zoo objects:

sKGE Split Kling-Gupta Efficiency between sim and obs
(-Inf <= sKGE <= 1). Only computed when both sim and obs are zoo objects

APFB Annual Peak Flow Bias (0 <= APFB <= Inf)

HBF High Flow Bias (0 <= HFB <= Inf)

r.Spearman Spearman Correlation coefficient (-1 <= r.Spearman <= 1). Only computed
when do.spearman=TRUE

pbiasfdc PBIAS in the slope of the midsegment of the Flow Duration Curve

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

36 ggof

References

Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. (2009), Assessing the impact of climate
change on water resources in Iran, Water Resources Research, 45(10), W10,434, doi:10.1029/2008WR007615.

Abbaspour, K.C., Yang, J. ; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J. ; Zobrist, J.; Srini-
vasan, R. (2007), Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed
using SWAT, Journal of Hydrology, 333(2-4), 413-430, doi:10.1016/j.jhydrol.2006.09.014.

Box, G.E. (1966). Use and abuse of regression. Technometrics, 8(4), 625-629. doi:10.1080/00401706.1966.10490407.

Barrett, J.P. (1974). The coefficient of determination-some limitations. The American Statistician,
28(1), 19-20. doi:10.1080/00031305.1974.10479056.

Chai, T.; Draxler, R.R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?
- Arguments against avoiding RMSE in the literature, Geoscientific Model Development, 7, 1247-
1250. doi:10.5194/gmd-7-1247-2014.

Cinkus, G.; Mazzilli, N.; Jourde, H.; Wunsch, A.; Liesch, T.; Ravbar, N.; Chen, Z.; and Gold-
scheider, N. (2023). When best is the enemy of good - critical evaluation of performance criteria in
hydrological models. Hydrology and Earth System Sciences 27, 2397-2411, doi:10.5194/hess-27-
2397-2023.

Criss, R. E.; Winston, W. E. (2008), Do Nash values have value? Discussion and alternate proposals.
Hydrological Processes, 22: 2723-2725. doi:10.1002/hyp.7072.

Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. (2010). Performance metrics for soil mois-
ture retrievals and application requirements. Journal of Hydrometeorology, 11(3), 832-840. doi:
10.1175/2010JHM1223.1.

Fowler, K.; Coxon, G.; Freer, J.; Peel, M.; Wagener, T.; Western, A.; Woods, R.; Zhang, L. (2018).
Simulating runoff under changing climatic conditions: A framework for model improvement. Water
Resources Research, 54(12), 812-9832. doi:10.1029/2018WR023989.

Garcia, F.; Folton, N.; Oudin, L. (2017). Which objective function to calibrate rainfall-runoff mod-
els for low-flow index simulations?. Hydrological sciences journal, 62(7), 1149-1166. doi:10.1080/02626667.2017.1308511.

Garrick, M.; Cunnane, C.; Nash, J.E. (1978). A criterion of efficiency for rainfall-runoff models.
Journal of Hydrology 36, 375-381. doi:10.1016/0022-1694(78)90155-5.

Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. (2009). Decomposition of the mean squared
error and NSE performance criteria: Implications for improving hydrological modelling. Journal of
hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003. ISSN 0022-1694.

Gupta, H.V.; Kling, H. (2011). On typical range, sensitivity, and normalization of Mean Squared Er-
ror and Nash-Sutcliffe Efficiency type metrics. Water Resources Research, 47(10). doi:10.1029/2011WR010962.

Hahn, G.J. (1973). The coefficient of determination exposed. Chemtech, 3(10), 609-612. Aailable
online at: https://www2.hawaii.edu/~cbaajwe/Ph.D.Seminar/Hahn1973.pdf.

Hodson, T.O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use
them or not, Geoscientific Model Development, 15, 5481-5487, doi:10.5194/gmd-15-5481-2022.

Hundecha, Y., Bardossy, A. (2004). Modeling of the effect of land use changes on the runoff
generation of a river basin through parameter regionalization of a watershed model. Journal of
hydrology, 292(1-4), 281-295. doi:10.1016/j.jhydrol.2004.01.002.

Kitanidis, P.K.; Bras, R.L. (1980). Real-time forecasting with a conceptual hydrologic model. 2.
Applications and results. Water Resources Research, Vol. 16, No. 6, pp. 1034:1044. doi:10.1029/WR016i006p01034.

https://www2.hawaii.edu/~cbaajwe/Ph.D.Seminar/Hahn1973.pdf

ggof 37

Kling, H.; Fuchs, M.; Paulin, M. (2012). Runoff conditions in the upper Danube basin under an en-
semble of climate change scenarios. Journal of Hydrology, 424, 264-277, doi:10.1016/j.jhydrol.2012.01.011.

Knoben, W.J.; Freer, J.E.; Woods, R.A. (2019). Inherent benchmark or not? Comparing Nash-
Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-
4331. doi:10.5194/hess-23-4323-2019.

Krause, P.; Boyle, D.P.; Base, F. (2005). Comparison of different efficiency criteria for hydrological
model assessment, Advances in Geosciences, 5, 89-97. doi:10.5194/adgeo-5-89-2005.

Krstic, G.; Krstic, N.S.; Zambrano-Bigiarini, M. (2016). The br2-weighting Method for Estimating
the Effects of Air Pollution on Population Health. Journal of Modern Applied Statistical Methods,
15(2), 42. doi:10.22237/jmasm/1478004000

Legates, D.R.; McCabe, G. J. Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in Hy-
drologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241. doi:10.1029/1998WR900018.

Ling, X.; Huang, Y.; Guo, W.; Wang, Y.; Chen, C.; Qiu, B.; Ge, J.; Qin, K.; Xue, Y.; Peng,
J. (2021). Comprehensive evaluation of satellite-based and reanalysis soil moisture products us-
ing in situ observations over China. Hydrology and Earth System Sciences, 25(7), 4209-4229.
doi:10.5194/hess-25-4209-2021.

Mizukami, N.; Rakovec, O.; Newman, A.J.; Clark, M.P.; Wood, A.W.; Gupta, H.V.; Kumar, R.:
(2019). On the choice of calibration metrics for "high-flow" estimation using hydrologic models,
Hydrology Earth System Sciences 23, 2601-2614, doi:10.5194/hess-23-2601-2019.

Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. (2007).
Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.
Transactions of the ASABE. 50(3):885-900

Nash, J.E. and Sutcliffe, J.V. (1970). River flow forecasting through conceptual models. Part 1: a
discussion of principles, Journal of Hydrology 10, pp. 282-290. doi:10.1016/0022-1694(70)90255-
6.

Pearson, K. (1920). Notes on the history of correlation. Biometrika, 13(1), 25-45. doi:10.2307/2331722.

Pfannerstill, M.; Guse, B.; Fohrer, N. (2014). Smart low flow signature metrics for an improved
overall performance evaluation of hydrological models. Journal of Hydrology, 510, 447-458. doi:10.1016/j.jhydrol.2013.12.044.

Pizarro, A.; Jorquera, J. (2024). Advancing objective functions in hydrological modelling: Inte-
grating knowable moments for improved simulation accuracy. Journal of Hydrology, 634, 131071.
doi:10.1016/j.jhydrol.2024.131071.

Pool, S.; Vis, M.; Seibert, J. (2018). Evaluating model performance: towards a non-parametric
variant of the Kling-Gupta efficiency. Hydrological Sciences Journal, 63(13-14), pp.1941-1953.
doi:/10.1080/02626667.2018.1552002.

Pushpalatha, R.; Perrin, C.; Le Moine, N.; Andreassian, V. (2012). A review of efficiency criteria
suitable for evaluating low-flow simulations. Journal of Hydrology, 420, 171-182. doi:10.1016/j.jhydrol.2011.11.055.

Santos, L.; Thirel, G.; Perrin, C. (2018). Pitfalls in using log-transformed flows within the KGE
criterion. doi:10.5194/hess-22-4583-2018.

Schaefli, B., Gupta, H. (2007). Do Nash values have value?. Hydrological Processes 21, 2075-2080.
doi:10.1002/hyp.6825.

Schober, P.; Boer, C.; Schwarte, L.A. (2018). Correlation coefficients: appropriate use and inter-
pretation. Anesthesia and Analgesia, 126(5), 1763-1768. doi:10.1213/ANE.0000000000002864.

38 ggof

Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. (2008b), Estimation of freshwater availability
in the West African sub-continent using the SWAT hydrologic model, Journal of Hydrology, 352(1-
2), 30, doi:10.1016/j.jhydrol.2007.12.025

Sorooshian, S., Q. Duan, and V. K. Gupta. (1993). Calibration of rainfall-runoff models: Applica-
tion of global optimization to the Sacramento Soil Moisture Accounting Model, Water Resources
Research, 29 (4), 1185-1194, doi:10.1029/92WR02617.

Spearman, C. (1961). The Proof and Measurement of Association Between Two Things. In J. J.
Jenkins and D. G. Paterson (Eds.), Studies in individual differences: The search for intelligence (pp.
45-58). Appleton-Century-Crofts. doi:10.1037/11491-005

Tang, G.; Clark, M.P.; Papalexiou, S.M. (2021). SC-earth: a station-based serially complete earth
dataset from 1950 to 2019. Journal of Climate, 34(16), 6493-6511. doi:10.1175/JCLI-D-21-0067.1.

Yapo P.O.; Gupta H.V.; Sorooshian S. (1996). Automatic calibration of conceptual rainfall-runoff
models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23-48. doi:10.1016/0022-
1694(95)02918-4

Yilmaz, K.K., Gupta, H.V. ; Wagener, T. (2008), A process-based diagnostic approach to model
evaluation: Application to the NWS distributed hydrologic model, Water Resources Research, 44,
W09417, doi:10.1029/2007WR006716.

Willmott, C.J. (1981). On the validation of models. Physical Geography, 2, 184–194. doi:10.1080/02723646.1981.10642213.

Willmott, C.J. (1984). On the evaluation of model performance in physical geography. Spatial
Statistics and Models, G. L. Gaile and C. J. Willmott, eds., 443-460. doi:10.1007/978-94-017-
3048-8_23.

Willmott, C.J.; Ackleson, S.G. Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell,
J.; Rowe, C.M. (1985), Statistics for the Evaluation and Comparison of Models, J. Geophys. Res.,
90(C5), 8995-9005. doi:10.1029/JC090iC05p08995.

Willmott, C.J.; Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root
mean square error (RMSE) in assessing average model performance, Climate Research, 30, 79-82,
doi:10.3354/cr030079.

Willmott, C.J.; Matsuura, K.; Robeson, S.M. (2009). Ambiguities inherent in sums-of-squares-
based error statistics, Atmospheric Environment, 43, 749-752, doi:10.1016/j.atmosenv.2008.10.005.

Willmott, C.J.; Robeson, S.M.; Matsuura, K. (2012). A refined index of model performance. Inter-
national Journal of climatology, 32(13), pp.2088-2094. doi:10.1002/joc.2419.

Willmott, C.J.; Robeson, S.M.; Matsuura, K.; Ficklin, D.L. (2015). Assessment of three dimen-
sionless measures of model performance. Environmental Modelling & Software, 73, pp.167-174.
doi:10.1016/j.envsoft.2015.08.012

Zambrano-Bigiarini, M.; Bellin, A. (2012). Comparing goodness-of-fit measures for calibration
of models focused on extreme events. EGU General Assembly 2012, Vienna, Austria, 22-27 Apr
2012, EGU2012-11549-1.

See Also

gof, plot2, ggof, me, mae, mse, rmse, ubRMSE, nrmse, pbias, rsr, rSD, NSE, mNSE, rNSE, wNSE, d,
dr, md, rd, cp, rPearson, R2, br2, KGE, KGElf, KGEnp, sKGE, VE, rSpearman, pbiasfdc

ggof 39

Examples

obs <- 1:10
sim <- 2:11

Not run:
ggof(sim, obs)

End(Not run)

##################
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Getting the numeric goodness of fit for the "best" (unattainable) case
gof(sim=sim, obs=obs)

Randomly changing the first 2000 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)

Getting the new numeric goodness-of-fit measures
gof(sim=sim, obs=obs)

Getting the graphical representation of 'obs' and 'sim' along with the numeric
goodness-of-fit measures for the daily and monthly time series
Not run:
ggof(sim=sim, obs=obs, ftype="dm", FUN=mean)

End(Not run)

Getting the graphical representation of 'obs' and 'sim' along with some numeric
goodness-of-fit measures for the seasonal time series
Not run:
ggof(sim=sim, obs=obs, ftype="seasonal", FUN=mean)

End(Not run)

Computing the daily residuals
even if this is a dummy example, it is enough for illustrating the capability
r <- sim-obs

Summarizing and plotting the residuals
Not run:
library(hydroTSM)

summary
smry(r)

40 gof

daily, monthly and annual plots, boxplots and histograms
hydroplot(r, FUN=mean)

seasonal plots and boxplots
hydroplot(r, FUN=mean, pfreq="seasonal")

End(Not run)

gof Numerical Goodness-of-fit measures

Description

Numerical goodness-of-fit measures between sim and obs, with treatment of missing values. Sev-
eral performance indices for comparing two vectors, matrices or data.frames

Usage

gof(sim, obs, ...)

Default S3 method:
gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE,

j=1, lambda=0.95, norm="sd", s=c(1,1,1), method=c("2009", "2012", "2021"),
lQ.thr=0.6, hQ.thr=0.1, start.month=1, digits=2, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE,

j=1, lambda=0.95, norm="sd", s=c(1,1,1), method=c("2009", "2012", "2021"),
lQ.thr=0.6, hQ.thr=0.1, start.month=1, digits=2, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE,

j=1, lambda=0.95, norm="sd", s=c(1,1,1), method=c("2009", "2012", "2021"),
lQ.thr=0.6, hQ.thr=0.1, start.month=1, digits=2, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE,

j=1, lambda=0.95, norm="sd", s=c(1,1,1), method=c("2009", "2012", "2021"),
lQ.thr=0.6, hQ.thr=0.1, start.month=1, digits=2, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

gof 41

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

do.spearman logical. Indicates if the Spearman correlation has to be computed. The default
is FALSE.

do.pbfdc logical. Indicates if the Percent Bias in the Slope of the midsegment of the Flow
Duration Curve (pbiasfdc) has to be computed. The default is FALSE.

j argument passed to the mNSE and wsNSE functions.

lambda argument passed to the wsNSE function.

norm argument passed to the nrmse function

s argument passed to the KGE, KGElf, sKGE and KGEkm functions.

method argument passed to the KGE, KGElf, sKGE and KGEkm functions.

lQ.thr [OPTIONAL]. Only used for the computation of the pbiasFDC % (with the
pbiasfdc function) and the weighted seasonal Nash-Sutcliffe Efficiency (with
the wsNSE function.

hQ.thr [OPTIONAL]. Only used for the computation of the pbiasFDC % (with the
pbiasfdc function), the high flow bias (HFB, with the HFB function) and the
weighted seasonal Nash-Sutcliffe Efficiency (with the wsNSE function.

start.month [OPTIONAL]. Only used for the computation of the split KGE (sKGE), annual
peak flow bias (APFB) and high flow bias (HFB) when the (hydrological) year of
interest is different from the calendar year.
numeric in [1:12] indicating the starting month of the (hydrological) year. Nu-
meric values in [1, 12] represent months in [January, December]. By default
start.month=1.

digits decimal places used for rounding the goodness-of-fit indexes.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the all the goodness-of-fit functions.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by FUN without the addition of any nummeric
value.

42 gof

2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying FUN, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying FUN.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying FUN.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Value

The output of the gof function is a matrix with one column only, and the following rows:

ME Mean Error

MAE Mean Absolute Error

MSE Mean Squared Error

RMSE Root Mean Square Error

ubRMSE Unbiased Root Mean Square Error

NRMSE Normalized Root Mean Square Error (-100% <= NRMSE <= 100%)

PBIAS Percent Bias (-Inf <= PBIAS <= Inf [%])

RSR Ratio of RMSE to the Standard Deviation of the Observations, RSR = rms /
sd(obs). (0 <= RSR <= +Inf)

rSD Ratio of Standard Deviations, rSD = sd(sim) / sd(obs)

NSE Nash-Sutcliffe Efficiency (-Inf <= NSE <= 1)

mNSE Modified Nash-Sutcliffe Efficiency (-Inf <= mNSE <= 1)

rNSE Relative Nash-Sutcliffe Efficiency (-Inf <= rNSE <= 1)

wNSE Weighted Nash-Sutcliffe Efficiency (-Inf <= wNSE <= 1)

wsNSE Weighted Seasonal Nash-Sutcliffe Efficiency (-Inf <= wsNSE <= 1)

d Index of Agreement (0 <= d <= 1)

dr Refined Index of Agreement (-1 <= dr <= 1)

md Modified Index of Agreement (0 <= md <= 1)

rd Relative Index of Agreement (0 <= rd <= 1)

cp Persistence Index (0 <= cp <= 1)

r Pearson Correlation coefficient (-1 <= r <= 1)

R2 Coefficient of Determination (0 <= R2 <= 1)

gof 43

bR2 R2 multiplied by the coefficient of the regression line between sim and obs
(0 <= bR2 <= 1)

VE Volumetric efficiency between sim and obs
(-Inf <= VE <= 1)

KGE Kling-Gupta efficiency between sim and obs
(-Inf <= KGE <= 1)

KGElf Kling-Gupta Efficiency for low values between sim and obs
(-Inf <= KGElf <= 1)

KGEnp Non-parametric version of the Kling-Gupta Efficiency between sim and obs
(-Inf <= KGEnp <= 1)

KGEkm Knowable Moments Kling-Gupta Efficiency between sim and obs
(-Inf <= KGEnp <= 1)

The following outputs are only produced when both sim and obs are zoo objects:

sKGE Split Kling-Gupta Efficiency between sim and obs
(-Inf <= sKGE <= 1). Only computed when both sim and obs are zoo objects

APFB Annual Peak Flow Bias (0 <= APFB <= Inf)

HBF High Flow Bias (0 <= HFB <= Inf)

r.Spearman Spearman Correlation coefficient (-1 <= r.Spearman <= 1). Only computed
when do.spearman=TRUE

pbiasfdc PBIAS in the slope of the midsegment of the Flow Duration Curve

Note

obs and sim has to have the same length/dimension.

Missing values in obs and/or sim can be removed before the computations, depending on the value
of na.rm.

Although r and r2 have been widely used for model evaluation, these statistics are over-sensitive
to outliers and insensitive to additive and proportional differences between model predictions and
measured data (Legates and McCabe, 1999)

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. (2009), Assessing the impact of climate
change on water resources in Iran, Water Resources Research, 45(10), W10,434, doi:10.1029/2008WR007615.

Abbaspour, K.C., Yang, J. ; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J. ; Zobrist, J.; Srini-
vasan, R. (2007), Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed
using SWAT, Journal of Hydrology, 333(2-4), 413-430, doi:10.1016/j.jhydrol.2006.09.014.

Box, G.E. (1966). Use and abuse of regression. Technometrics, 8(4), 625-629. doi:10.1080/00401706.1966.10490407.

44 gof

Barrett, J.P. (1974). The coefficient of determination-some limitations. The American Statistician,
28(1), 19-20. doi:10.1080/00031305.1974.10479056.

Chai, T.; Draxler, R.R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?
- Arguments against avoiding RMSE in the literature, Geoscientific Model Development, 7, 1247-
1250. doi:10.5194/gmd-7-1247-2014.

Cinkus, G.; Mazzilli, N.; Jourde, H.; Wunsch, A.; Liesch, T.; Ravbar, N.; Chen, Z.; and Gold-
scheider, N. (2023). When best is the enemy of good - critical evaluation of performance criteria in
hydrological models. Hydrology and Earth System Sciences 27, 2397-2411, doi:10.5194/hess-27-
2397-2023.

Criss, R. E.; Winston, W. E. (2008), Do Nash values have value? Discussion and alternate proposals.
Hydrological Processes, 22: 2723-2725. doi:10.1002/hyp.7072.

Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. (2010). Performance metrics for soil mois-
ture retrievals and application requirements. Journal of Hydrometeorology, 11(3), 832-840. doi:
10.1175/2010JHM1223.1.

Fowler, K.; Coxon, G.; Freer, J.; Peel, M.; Wagener, T.; Western, A.; Woods, R.; Zhang, L. (2018).
Simulating runoff under changing climatic conditions: A framework for model improvement. Water
Resources Research, 54(12), 812-9832. doi:10.1029/2018WR023989.

Garcia, F.; Folton, N.; Oudin, L. (2017). Which objective function to calibrate rainfall-runoff mod-
els for low-flow index simulations?. Hydrological sciences journal, 62(7), 1149-1166. doi:10.1080/02626667.2017.1308511.

Garrick, M.; Cunnane, C.; Nash, J.E. (1978). A criterion of efficiency for rainfall-runoff models.
Journal of Hydrology 36, 375-381. doi:10.1016/0022-1694(78)90155-5.

Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. (2009). Decomposition of the mean squared
error and NSE performance criteria: Implications for improving hydrological modelling. Journal of
hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003. ISSN 0022-1694.

Gupta, H.V.; Kling, H. (2011). On typical range, sensitivity, and normalization of Mean Squared Er-
ror and Nash-Sutcliffe Efficiency type metrics. Water Resources Research, 47(10). doi:10.1029/2011WR010962.

Hahn, G.J. (1973). The coefficient of determination exposed. Chemtech, 3(10), 609-612. Aailable
online at: https://www2.hawaii.edu/~cbaajwe/Ph.D.Seminar/Hahn1973.pdf.

Hodson, T.O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use
them or not, Geoscientific Model Development, 15, 5481-5487, doi:10.5194/gmd-15-5481-2022.

Hundecha, Y., Bardossy, A. (2004). Modeling of the effect of land use changes on the runoff
generation of a river basin through parameter regionalization of a watershed model. Journal of
hydrology, 292(1-4), 281-295. doi:10.1016/j.jhydrol.2004.01.002.

Kitanidis, P.K.; Bras, R.L. (1980). Real-time forecasting with a conceptual hydrologic model. 2.
Applications and results. Water Resources Research, Vol. 16, No. 6, pp. 1034:1044. doi:10.1029/WR016i006p01034.

Kling, H.; Fuchs, M.; Paulin, M. (2012). Runoff conditions in the upper Danube basin under an en-
semble of climate change scenarios. Journal of Hydrology, 424, 264-277, doi:10.1016/j.jhydrol.2012.01.011.

Knoben, W.J.; Freer, J.E.; Woods, R.A. (2019). Inherent benchmark or not? Comparing Nash-
Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-
4331. doi:10.5194/hess-23-4323-2019.

Krause, P.; Boyle, D.P.; Base, F. (2005). Comparison of different efficiency criteria for hydrological
model assessment, Advances in Geosciences, 5, 89-97. doi:10.5194/adgeo-5-89-2005.

https://www2.hawaii.edu/~cbaajwe/Ph.D.Seminar/Hahn1973.pdf

gof 45

Krstic, G.; Krstic, N.S.; Zambrano-Bigiarini, M. (2016). The br2-weighting Method for Estimating
the Effects of Air Pollution on Population Health. Journal of Modern Applied Statistical Methods,
15(2), 42. doi:10.22237/jmasm/1478004000

Legates, D.R.; McCabe, G. J. Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in Hy-
drologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241. doi:10.1029/1998WR900018.

Ling, X.; Huang, Y.; Guo, W.; Wang, Y.; Chen, C.; Qiu, B.; Ge, J.; Qin, K.; Xue, Y.; Peng,
J. (2021). Comprehensive evaluation of satellite-based and reanalysis soil moisture products us-
ing in situ observations over China. Hydrology and Earth System Sciences, 25(7), 4209-4229.
doi:10.5194/hess-25-4209-2021.

Mizukami, N.; Rakovec, O.; Newman, A.J.; Clark, M.P.; Wood, A.W.; Gupta, H.V.; Kumar, R.:
(2019). On the choice of calibration metrics for "high-flow" estimation using hydrologic models,
Hydrology Earth System Sciences 23, 2601-2614, doi:10.5194/hess-23-2601-2019.

Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. (2007).
Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.
Transactions of the ASABE. 50(3):885-900

Nash, J.E. and Sutcliffe, J.V. (1970). River flow forecasting through conceptual models. Part 1: a
discussion of principles, Journal of Hydrology 10, pp. 282-290. doi:10.1016/0022-1694(70)90255-
6.

Pearson, K. (1920). Notes on the history of correlation. Biometrika, 13(1), 25-45. doi:10.2307/2331722.

Pfannerstill, M.; Guse, B.; Fohrer, N. (2014). Smart low flow signature metrics for an improved
overall performance evaluation of hydrological models. Journal of Hydrology, 510, 447-458. doi:10.1016/j.jhydrol.2013.12.044.

Pizarro, A.; Jorquera, J. (2024). Advancing objective functions in hydrological modelling: Inte-
grating knowable moments for improved simulation accuracy. Journal of Hydrology, 634, 131071.
doi:10.1016/j.jhydrol.2024.131071.

Pool, S.; Vis, M.; Seibert, J. (2018). Evaluating model performance: towards a non-parametric
variant of the Kling-Gupta efficiency. Hydrological Sciences Journal, 63(13-14), pp.1941-1953.
doi:/10.1080/02626667.2018.1552002.

Pushpalatha, R.; Perrin, C.; Le Moine, N.; Andreassian, V. (2012). A review of efficiency criteria
suitable for evaluating low-flow simulations. Journal of Hydrology, 420, 171-182. doi:10.1016/j.jhydrol.2011.11.055.

Santos, L.; Thirel, G.; Perrin, C. (2018). Pitfalls in using log-transformed flows within the KGE
criterion. doi:10.5194/hess-22-4583-2018.

Schaefli, B., Gupta, H. (2007). Do Nash values have value?. Hydrological Processes 21, 2075-2080.
doi:10.1002/hyp.6825.

Schober, P.; Boer, C.; Schwarte, L.A. (2018). Correlation coefficients: appropriate use and inter-
pretation. Anesthesia and Analgesia, 126(5), 1763-1768. doi:10.1213/ANE.0000000000002864.

Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. (2008b), Estimation of freshwater availability
in the West African sub-continent using the SWAT hydrologic model, Journal of Hydrology, 352(1-
2), 30, doi:10.1016/j.jhydrol.2007.12.025

Sorooshian, S., Q. Duan, and V. K. Gupta. (1993). Calibration of rainfall-runoff models: Applica-
tion of global optimization to the Sacramento Soil Moisture Accounting Model, Water Resources
Research, 29 (4), 1185-1194, doi:10.1029/92WR02617.

Spearman, C. (1961). The Proof and Measurement of Association Between Two Things. In J. J.
Jenkins and D. G. Paterson (Eds.), Studies in individual differences: The search for intelligence (pp.
45-58). Appleton-Century-Crofts. doi:10.1037/11491-005

46 gof

Tang, G.; Clark, M.P.; Papalexiou, S.M. (2021). SC-earth: a station-based serially complete earth
dataset from 1950 to 2019. Journal of Climate, 34(16), 6493-6511. doi:10.1175/JCLI-D-21-0067.1.

Yapo P.O.; Gupta H.V.; Sorooshian S. (1996). Automatic calibration of conceptual rainfall-runoff
models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23-48. doi:10.1016/0022-
1694(95)02918-4

Yilmaz, K.K., Gupta, H.V. ; Wagener, T. (2008), A process-based diagnostic approach to model
evaluation: Application to the NWS distributed hydrologic model, Water Resources Research, 44,
W09417, doi:10.1029/2007WR006716.

Willmott, C.J. (1981). On the validation of models. Physical Geography, 2, 184–194. doi:10.1080/02723646.1981.10642213.

Willmott, C.J. (1984). On the evaluation of model performance in physical geography. Spatial
Statistics and Models, G. L. Gaile and C. J. Willmott, eds., 443-460. doi:10.1007/978-94-017-
3048-8_23.

Willmott, C.J.; Ackleson, S.G. Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell,
J.; Rowe, C.M. (1985), Statistics for the Evaluation and Comparison of Models, J. Geophys. Res.,
90(C5), 8995-9005. doi:10.1029/JC090iC05p08995.

Willmott, C.J.; Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root
mean square error (RMSE) in assessing average model performance, Climate Research, 30, 79-82,
doi:10.3354/cr030079.

Willmott, C.J.; Matsuura, K.; Robeson, S.M. (2009). Ambiguities inherent in sums-of-squares-
based error statistics, Atmospheric Environment, 43, 749-752, doi:10.1016/j.atmosenv.2008.10.005.

Willmott, C.J.; Robeson, S.M.; Matsuura, K. (2012). A refined index of model performance. Inter-
national Journal of climatology, 32(13), pp.2088-2094. doi:10.1002/joc.2419.

Willmott, C.J.; Robeson, S.M.; Matsuura, K.; Ficklin, D.L. (2015). Assessment of three dimen-
sionless measures of model performance. Environmental Modelling & Software, 73, pp.167-174.
doi:10.1016/j.envsoft.2015.08.012

Zambrano-Bigiarini, M.; Bellin, A. (2012). Comparing goodness-of-fit measures for calibration
of models focused on extreme events. EGU General Assembly 2012, Vienna, Austria, 22-27 Apr
2012, EGU2012-11549-1.

See Also

ggof, me, mae, mse, rmse, ubRMSE, nrmse, pbias, rsr, rSD, NSE, mNSE, rNSE, wNSE, wsNSE, d, dr, md,
rd, cp, rPearson, R2, br2, VE, KGE, KGElf, KGEnp, , KGEkm, sKGE, APFB, HFB, rSpearman, pbiasfdc

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
gof(sim, obs)

obs <- 1:10
sim <- 2:11
gof(sim, obs)

##################

gof 47

Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'gof' for the "best" (unattainable) case
gof(sim=sim, obs=obs)

##################
Example 3: gof for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for low flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

gof(sim=sim, obs=obs)

##################
Example 4: gof for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

gof(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
gof(sim=lsim, obs=lobs)

##################
Example 5: gof for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

gof(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
gof(sim=lsim, obs=lobs)

##################
Example 6: gof for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)

48 gof

logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
gof(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
gof(sim=lsim, obs=lobs)

##################
Example 7: gof for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
gof(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
gof(sim=lsim, obs=lobs)

##################
Example 8: gof for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

gof(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
gof(sim=sim1, obs=obs1)

Storing a matrix object with all the GoFs:
g <- gof(sim, obs)

Getting only the RMSE
g[4,1]
g["RMSE",]

Not run:
Writing all the GoFs into a TXT file
write.table(g, "GoFs.txt", col.names=FALSE, quote=FALSE)

Getting the graphical representation of 'obs' and 'sim' along with the

HFB 49

numeric goodness of fit
ggof(sim=sim, obs=obs)

End(Not run)

HFB High-flows bias

Description

High flow bias between sim and obs, with treatment of missing values.

This function is designed to identify differences in high values. See Details.

Usage

HFB(sim, obs, ...)

Default S3 method:
HFB(sim, obs, na.rm=TRUE,

hQ.thr=0.1, start.month=1, out.PerYear=FALSE,
fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
HFB(sim, obs, na.rm=TRUE,

hQ.thr=0.1, start.month=1, out.PerYear=FALSE,
fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
HFB(sim, obs, na.rm=TRUE,

hQ.thr=0.1, start.month=1, out.PerYear=FALSE,
fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
HFB(sim, obs, na.rm=TRUE,

hQ.thr=0.1, start.month=1, out.PerYear=FALSE,
fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

50 HFB

Arguments

sim numeric, zoo, matrix or data.frame with simulated values
obs numeric, zoo, matrix or data.frame with observed values
na.rm a logical value indicating whether ’NA’ should be stripped before the computa-

tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

hQ.thr numeric, representing the exceedence probabiliy used to identify high flows in
obs. All values in obs that are equal or higher than quantile(obs, probs=(1-hQ.thr))
are considered as high flows. By default hQ.thr=0.1.
On the other hand, the high values in sim are those located at the same i-th
position than the i-th value of the obs deemed as high flows.

start.month [OPTIONAL]. Only used when the (hydrological) year of interest is different
from the calendar year.
numeric in [1:12] indicating the starting month of the (hydrological) year. Nu-
meric values in [1, 12] represent months in [January, December]. By default
start.month=1.

out.PerYear logical, indicating whether the output of this function has to include the median
annual high-flows bias obtained for the individual years in sim and obs or not.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.
epsilon.type argument used to define a numeric value to be added to both sim and obs before

applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

HFB 51

Details

The median annual high flow bias (HFB) is designed to drive the calibration of hydrological models
focused in the reproduction of high-flow events.

The high flow bias (HFB) ranges from 0 to Inf, with an optimal value of 0. Higher values of HFB
indicate stronger differences between the high values of sim and obs. Essentially, the closer to 0,
the more similar the high values of sim and obs are.

The HFB function is inspired in the annual peak-flow bias (APFB) objective function proposed by
Mizukami et al. (2019). However, it has four important diferences:

1) instead of considering only the observed annual peak flow in each year, it considers all the
high flows in each year, where "high flows" are all the values above a user-defined quantile of the
observed values, by default 0.9 (hQ.thr=0.1).

2) insted of considering only the simulated high flows for each year, which might occur in a
date/time different from the date in which occurs the observed annual peak flow, it considers as
many high simulated flows as the number of high observed flows for each year, each one in the
exact same date/time in which the corresponding observed high flow occurred.

3) for each year, instead of using a single bias value (i.e., the bias in the single annual peak flow), it
uses the median of all the bias in the user-defined high flows

4) when computing the final value of this metric, instead o using the mean of the annual values, it
uses the median, in order to take a stronger representation of the bias when its distribution is not
symetric.

Value

If out.PerYear=FALSE: numeric with the median high flow bias between sim and obs. If sim and
obs are matrices, the output value is a vector, with the high flow bias between each column of sim
and obs.

If out.PerYear=TRUE: a list of two elements:

HFB.value numeric with the median annual high flow bias between sim and obs. If sim and
obs are matrices, the output value is a vector, with the median annual high flow
bias between each column of sim and obs.

HFB.PerYear -) If sim and obs are not data.frame/matrix, the output is numeric, with the
median high flow bias obtained for the individual years between sim and obs.
-) If sim and obs are data.frame/matrix, this output is a data.frame, with the
median high flow bias obtained for the individual years between sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano-Bigiarini <mzb.devel@gmail.com>

52 HFB

References

Mizukami, N.; Rakovec, O.; Newman, A.J.; Clark, M.P.; Wood, A.W.; Gupta, H.V.; Kumar, R.:
(2019). On the choice of calibration metrics for "high-flow" estimation using hydrologic models,
Hydrology Earth System Sciences 23, 2601-2614, doi:10.5194/hess-23-2601-2019.

See Also

APFB, NSE, wNSE, , wsNSE, gof, ggof

Examples

##################
Example 1: Looking at the difference between 'NSE', 'wNSE', and 'HFB'
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Simulated daily time series, created equal to the observed values and then
random noise is added only to high flows, i.e., those equal or higher than
the quantile 0.9 of the observed values.
sim <- obs
hQ.thr <- quantile(obs, probs=0.9, na.rm=TRUE)
hQ.index <- which(obs >= hQ.thr)
hQ.n <- length(hQ.index)
sim[hQ.index] <- sim[hQ.index] + rnorm(hQ.n, mean=mean(sim[hQ.index], na.rm=TRUE))

Traditional Nash-Sutcliffe eficiency
NSE(sim=sim, obs=obs)

Weighted Nash-Sutcliffe efficiency (Hundecha and Bardossy, 2004)
wNSE(sim=sim, obs=obs)

HFB (Garcia et al., 2017):
HFB(sim=sim, obs=obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'HFB' for the "best" (unattainable) case
HFB(sim=sim, obs=obs)

##################
Example 3: HFB for simulated values created equal to the observed values and then
random noise is added only to high flows, i.e., those equal or higher than
the quantile 0.9 of the observed values.

KGE 53

sim <- obs
hQ.thr <- quantile(obs, hQ.thr=0.9, na.rm=TRUE)
hQ.index <- which(obs >= hQ.thr)
hQ.n <- length(hQ.index)
sim[hQ.index] <- sim[hQ.index] + rnorm(hQ.n, mean=mean(sim[hQ.index], na.rm=TRUE))
ggof(sim, obs)

HFB(sim=sim, obs=obs)

##################
Example 4: HFB for simulated values created equal to the observed values and then
random noise is added only to high flows, i.e., those equal or higher than
the quantile 0.9 of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

HFB(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
HFB(sim=lsim, obs=lobs)

##################
Example 5: HFB for simulated values created equal to the observed values and then
random noise is added only to high flows, i.e., those equal or higher than
the quantile 0.9 of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

HFB(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
HFB(sim=sim1, obs=obs1)

KGE Kling-Gupta Efficiency

Description

Kling-Gupta efficiency between sim and obs, with treatment of missing values.

This goodness-of-fit measure was developed by Gupta et al. (2009) to provide a diagnostically
interesting decomposition of the Nash-Sutcliffe efficiency (and hence MSE), which facilitates the
analysis of the relative importance of its different components (correlation, bias and variability) in
the context of hydrological modelling.

54 KGE

Kling et al. (2012) proposed a revised version of this index (KGE’) to ensure that the bias and
variability ratios are not cross-correlated.

Tang et al. (2021) proposed a revised version of this index (KGE”) to avoid the anomalously
negative KGE’ or KGE values when the mean value is close to zero.

For a short description of its three components and the numeric range of varios, pleae see Details.

Usage

KGE(sim, obs, ...)

Default S3 method:
KGE(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012", "2021"),

out.type=c("single", "full"), fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'data.frame'
KGE(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012", "2021"),

out.type=c("single", "full"), fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'matrix'
KGE(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012", "2021"),

out.type=c("single", "full"), fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'zoo'
KGE(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012", "2021"),

out.type=c("single", "full"), fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values
obs numeric, zoo, matrix or data.frame with observed values
s numeric of length 3, representing the scaling factors to be used for re-scaling

the criteria space before computing the Euclidean distance from the ideal point
c(1,1,1), i.e., s elements are used for adjusting the emphasis on different com-
ponents. The first elements is used for rescaling the Pearson product-moment
correlation coefficient (r), the second element is used for rescaling Alpha and
the third element is used for re-scaling Beta

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

KGE 55

method character, indicating the formula used to compute the variability ratio in the
Kling-Gupta efficiency. Valid values are:
-) 2009: the variability is defined as ‘Alpha’, the ratio of the standard deviation
of sim values to the standard deviation of obs. This is the default option. See
Gupta et al. (2009).
-) 2012: the variability is defined as ‘Gamma’, the ratio of the coefficient of
variation of sim values to the coefficient of variation of obs. See Kling et al.
(2012).
-) 2021: the bias is defined as ‘Beta’, the ratio of mean(sim) minus mean(obs)
to the standard deviation of obs. The variability is defined as ‘Alpha’, the ratio
of the standard deviation of sim values to the standard deviation of obs. See
Tang et al. (2021).

out.type character, indicating the whether the output of the function has to include each
one of the three terms used in the computation of the Kling-Gupta efficiency or
not. Valid values are:
-) single: the output is a numeric with the Kling-Gupta efficiency only.
-) full: the output is a list of two elements: the first one with the Kling-Gupta
efficiency, and the second is a numeric with 3 elements: the Pearson product-
moment correlation coefficient (‘r’), the ratio between the mean of the simu-
lated values to the mean of observations (‘Beta’), and the variability measure
(‘Gamma’ or ‘Alpha’, depending on the value of method).

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the Kling-Gupta efficiency.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any nummeric
value.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to

56 KGE

multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

In the computation of this index, there are three main components involved:

1) r : the Pearson product-moment correlation coefficient. Ideal value is r=1.

2) Beta : the ratio between the mean of the simulated values and the mean of the observed ones.
Ideal value is Beta=1.

3) vr : variability ratio, which could be computed using the standard deviation (Alpha) or the
coefficient of variation (Gamma) of sim and obs, depending on the value of method:

3.1) Alpha: the ratio between the standard deviation of the simulated values and the standard devi-
ation of the observed ones. Its ideal value is Alpha=1.

3.2) Gamma: the ratio between the coefficient of variation (CV) of the simulated values to the coeffi-
cient of variation of the observed ones. Its ideal value is Gamma=1.

For a full discussion of the Kling-Gupta index, and its advantages over the Nash-Sutcliffe efficiency
(NSE) see Gupta et al. (2009).

Kling-Gupta efficiencies range from -Inf to 1. Essentially, the closer to 1, the more similar sim and
obs are.

Knoben et al. (2019) showed that KGE values greater than -0.41 indicate that a model improves
upon the mean flow benchmark, even if the model’s KGE value is negative.

KGE = 1− ED

ED =
√

(s[1] ∗ (r − 1))2 + (s[2] ∗ (vr − 1))2 + (s[3] ∗ (β − 1))2

r = Pearsonproduct−momentcorrelationcoefficient

vr =

{
α , method = 2009
γ , method = 2012

β = µs/µo

α = σs/σo

γ =
CVs
CVo

=
σs/µs

σo/µo

Value

If out.type=single: numeric with the Kling-Gupta efficiency between sim and obs. If sim and
obs are matrices, the output value is a vector, with the Kling-Gupta efficiency between each column
of sim and obs

If out.type=full: a list of two elements:

KGE.value numeric with the Kling-Gupta efficiency. If sim and obs are matrices, the output
value is a vector, with the Kling-Gupta efficiency between each column of sim
and obs

KGE 57

KGE.elements numeric with 3 elements: the Pearson product-moment correlation coefficient
(‘r’), the ratio between the mean of the simulated values to the mean of observa-
tions (‘Beta’), and the variability measure (‘Gamma’ or ‘Alpha’, depending on
the value of method). If sim and obs are matrices, the output value is a matrix,
with the previous three elements computed for each column of sim and obs

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano-Bigiarini <mzb.devel@gmail.com>

References

Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. (2009). Decomposition of the mean squared
error and NSE performance criteria: Implications for improving hydrological modelling. Journal of
hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003. ISSN 0022-1694.

Kling, H.; Fuchs, M.; Paulin, M. (2012). Runoff conditions in the upper Danube basin under an en-
semble of climate change scenarios. Journal of Hydrology, 424, 264-277, doi:10.1016/j.jhydrol.2012.01.011.

Tang, G.; Clark, M.P.; Papalexiou, S.M. (2021). SC-earth: a station-based serially complete earth
dataset from 1950 to 2019. Journal of Climate, 34(16), 6493-6511. doi:10.1175/JCLI-D-21-0067.1.

Santos, L.; Thirel, G.; Perrin, C. (2018). Pitfalls in using log-transformed flows within the KGE
criterion. doi:10.5194/hess-22-4583-2018.

Knoben, W.J.; Freer, J.E.; Woods, R.A. (2019). Inherent benchmark or not? Comparing Nash-
Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-
4331. doi:10.5194/hess-23-4323-2019.

Mizukami, N.; Rakovec, O.; Newman, A.J.; Clark, M.P.; Wood, A.W.; Gupta, H.V.; Kumar, R.
(2019). On the choice of calibration metrics for "high-flow" estimation using hydrologic models.
doi:10.5194/hess-23-2601-2019.

Cinkus, G.; Mazzilli, N.; Jourde, H.; Wunsch, A.; Liesch, T.; Ravbar, N.; Chen, Z.; and Gold-
scheider, N. (2023). When best is the enemy of good - critical evaluation of performance criteria in
hydrological models. Hydrology and Earth System Sciences 27, 2397-2411, doi:10.5194/hess-27-
2397-2023.

See Also

KGElf, sKGE, KGEnp, gof, ggof

58 KGE

Examples

Example1: basic ideal case
obs <- 1:10
sim <- 1:10
KGE(sim, obs)

obs <- 1:10
sim <- 2:11
KGE(sim, obs)

##################
Example2: Looking at the difference between 'method=2009' and 'method=2012'
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Simulated daily time series, initially equal to twice the observed values
sim <- 2*obs

Traditional Kling-Gupta eficiency (Gupta and Kling, 2009)
KGE(sim=sim, obs=obs, method="2009", out.type="full")

KGE': Kling-Gupta eficiency 2012 (Kling et al.,2012)
KGE(sim=sim, obs=obs, method="2012", out.type="full")

KGE'': Kling-Gupta eficiency 2021 (Tang et al.,2021)
KGE(sim=sim, obs=obs, method="2021", out.type="full")

##################
Example3: KGE for simulated values equal to observations plus random noise
on the first half of the observed values
Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim <- obs
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)

Computing the new 'KGE'
KGE(sim=sim, obs=obs)

Randomly changing the first 2000 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)

Traditional Kling-Gupta eficiency (Gupta and Kling, 2009)
KGE(sim=sim, obs=obs, method="2009", out.type="full")

KGE': Kling-Gupta eficiency 2012 (Kling et al.,2012)
KGE(sim=sim, obs=obs, method="2012", out.type="full")

KGE'': Kling-Gupta eficiency 2021 (Tang et al.,2021)
KGE(sim=sim, obs=obs, method="2021", out.type="full")

KGE 59

##################
Example 4: KGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

KGE(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
KGE(sim=lsim, obs=lobs)

##################
Example 5: KGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

KGE(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGE(sim=lsim, obs=lobs)

##################
Example 6: KGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
KGE(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGE(sim=lsim, obs=lobs)

##################
Example 7: KGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
KGE(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)

60 KGEkm

lobs <- log(obs+eps)
KGE(sim=lsim, obs=lobs)

##################
Example 8: KGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

KGE(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
KGE(sim=sim1, obs=obs1)

KGEkm Kling-Gupta Efficiency with knowable-moments

Description

Kling-Gupta efficiency between sim and obs, with use of knowable moments and treatment of
missing values.

This goodness-of-fit measure was developed by Pizarro and Jorquera (2024), as a modification to
the original Kling-Gupta efficiency (KGE) proposed by Gupta et al. (2009). See Details.

Usage

KGEkm(sim, obs, ...)

Default S3 method:
KGEkm(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2012", "2009", "2021"),

out.type=c("single", "full"), fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'data.frame'
KGEkm(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2012", "2009", "2021"),

out.type=c("single", "full"), fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'matrix'
KGEkm(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2012", "2009", "2021"),

out.type=c("single", "full"), fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

KGEkm 61

S3 method for class 'zoo'
KGEkm(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2012", "2009", "2021"),

out.type=c("single", "full"), fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

s numeric of length 3, representing the scaling factors to be used for re-scaling
the criteria space before computing the Euclidean distance from the ideal point
c(1,1,1), i.e., s elements are used for adjusting the emphasis on different com-
ponents. The first elements is used for rescaling the Pearson product-moment
correlation coefficient (r), the second element is used for rescaling Alpha and
the third element is used for re-scaling Beta

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

method character, indicating the formula used to compute the variability ratio in the
Kling-Gupta efficiency. Valid values are:
-) 2012: the variability is defined as ‘Gamma’, the ratio of the coefficient of
variation of sim values to the coefficient of variation of obs. See Pizarro and
Jorquera (2024) and Kling et al. (2012).
-) 2009: the variability is defined as ‘Alpha’, the ratio of the standard deviation
of sim values to the standard deviation of obs. This is the default option. See
Gupta et al. (2009).
-) 2021: the bias is defined as ‘Beta’, the ratio of mean(sim) minus mean(obs)
to the standard deviation of obs. The variability is defined as ‘Alpha’, the ratio
of the standard deviation of sim values to the standard deviation of obs. See
Tang et al. (2021).

out.type character, indicating the whether the output of the function has to include each
one of the three terms used in the computation of the Kling-Gupta efficiency or
not. Valid values are:
-) single: the output is a numeric with the Kling-Gupta efficiency only.
-) full: the output is a list of two elements: the first one with the Kling-Gupta
efficiency, and the second is a numeric with 3 elements: the Pearson product-
moment correlation coefficient (‘r’), the ratio between the mean of the simu-
lated values to the mean of observations (‘Beta’), and the variability measure
(‘Gamma’ or ‘Alpha’, depending on the value of method).

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the Kling-Gupta efficiency.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

62 KGEkm

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any nummeric
value.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

Traditional objective functions, such as Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Effi-
ciency (KGE), often make assumptions about data distribution and are sensitive to outliers. The
Kling-Gupta Efficiency with knowable-moments (KGEkm) goodness-of-fit measure was developed
by Pizarro and Jorquera (2024) to provide a reliable estimation and effective description of high-
order statistics from typical hydrological samples and, therefore, reducing uncertainty in their esti-
mation and computation of the KGE.

In the same line that the traditional Kling-Gupta efficiency, the KGEkm ranges from -Inf to 1.
Essentially, the closer to 1, the more similar sim and obs are.

In the computation of this index, there are three main components involved:

1) r : the Pearson product-moment correlation coefficient. Ideal value is r=1.

2) Beta : the ratio between the mean of the simulated values and the mean of the observed ones.
Ideal value is Beta=1.

3) vr : variability ratio, which could be computed using the standard deviation (Alpha) or the
coefficient of variation (Gamma) of sim and obs, depending on the value of method:

3.1) Alpha: the ratio between the standard deviation of the simulated values and the standard devi-
ation of the observed ones. Its ideal value is Alpha=1.

3.2) Gamma: the ratio between the coefficient of variation (CV) of the simulated values to the coeffi-
cient of variation of the observed ones. Its ideal value is Gamma=1.

KGEkm 63

KGEkm = 1− ED

ED =
√

(s[1] ∗ (r − 1))2 + (s[2] ∗ (vr − 1))2 + (s[3] ∗ (β − 1))2

r = Pearsonproduct−momentcorrelationcoefficient

vr =

{
α , method = 2009
γ , method = 2012

β = µs/µo

α = σs/σo

γ =
CVs
CVo

=
σs/µs

σo/µo

Value

If out.type=single: numeric with the Kling-Gupta efficiency between sim and obs. If sim and
obs are matrices, the output value is a vector, with the Kling-Gupta efficiency between each column
of sim and obs

If out.type=full: a list of two elements:

KGEkm.value numeric with the Kling-Gupta efficiency. If sim and obs are matrices, the output
value is a vector, with the Kling-Gupta efficiency between each column of sim
and obs

KGEkm.elements numeric with 3 elements: the Pearson product-moment correlation coefficient
(‘r’), the ratio between the mean of the simulated values to the mean of observa-
tions (‘Beta’), and the variability measure (‘Gamma’ or ‘Alpha’, depending on
the value of method). If sim and obs are matrices, the output value is a matrix,
with the previous three elements computed for each column of sim and obs

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano-Bigiarini <mzb.devel@gmail.com>

64 KGEkm

References

Pizarro, A.; Jorquera, J. (2024). Advancing objective functions in hydrological modelling: Inte-
grating knowable moments for improved simulation accuracy. Journal of Hydrology, 634, 131071.
doi:10.1016/j.jhydrol.2024.131071.

Kling, H.; Fuchs, M.; Paulin, M. (2012). Runoff conditions in the upper Danube basin under an en-
semble of climate change scenarios. Journal of Hydrology, 424, 264-277, doi:10.1016/j.jhydrol.2012.01.011.

Gupta, H. V.; Kling, H.; Yilmaz, K. K.; Martinez, G. F. (2009). Decomposition of the mean squared
error and NSE performance criteria: Implications for improving hydrological modelling. Journal of
hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003. ISSN 0022-1694.

Tang, G.; Clark, M. P.; Papalexiou, S. M. (2021). SC-earth: a station-based serially complete earth
dataset from 1950 to 2019. Journal of Climate, 34(16), 6493-6511. doi:10.1175/JCLI-D-21-0067.1.

Santos, L.; Thirel, G.; Perrin, C. (2018). Pitfalls in using log-transformed flows within the KGEkm
criterion. doi:10.5194/hess-22-4583-2018.

Knoben, W.J.; Freer, J.E.; Woods, R.A. (2019). Inherent benchmark or not? Comparing Nash-
Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-
4331. doi:10.5194/hess-23-4323-2019.

Cinkus, G., Mazzilli, N., Jourde, H., Wunsch, A., Liesch, T., Ravbar, N., Chen, Z., and Goldschei-
der, N. (2023). When best is the enemy of good - critical evaluation of performance criteria in
hydrological models. Hydrology and Earth System Sciences 27, 2397-2411, doi:10.5194/hess-27-
2397-2023

See Also

KGE, KGElf, sKGE, KGEnp, gof, ggof

Examples

Example1: basic ideal case
obs <- 1:10
sim <- 1:10
KGEkm(sim, obs)

obs <- 1:10
sim <- 2:11
KGEkm(sim, obs)

##################
Example2: Looking at the difference between 'method=2009' and 'method=2012'

Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Simulated daily time series, initially equal to twice the observed values
sim <- 2*obs

KGEkm 2012 (method="2012" is the default option for KGEkm)
KGEkm(sim=sim, obs=obs, method="2012", out.type="full")

KGEkm 65

KGEkm 2009
KGEkm(sim=sim, obs=obs, method="2009", out.type="full")

##################
Example 2: Looking at the difference between 'KGEkm', KGE', 'NSE', 'wNSE',
'wsNSE' and 'APFB' for detecting differences in high flows

Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Simulated daily time series, created equal to the observed values and then
random noise is added only to high flows, i.e., those equal or higher than
the quantile 0.9 of the observed values.
sim <- obs
hQ.thr <- quantile(obs, probs=0.9, na.rm=TRUE)
hQ.index <- which(obs >= hQ.thr)
hQ.n <- length(hQ.index)
sim[hQ.index] <- sim[hQ.index] + rnorm(hQ.n, mean=mean(sim[hQ.index], na.rm=TRUE))

KGEkm (Pizarro and Jorquera, 2024; method='2012')
KGEkm(sim=sim, obs=obs)

KGE': Kling-Gupta eficiency 2012 (Kling et al.,2012)
KGE(sim=sim, obs=obs, method="2012")

Traditional Kling-Gupta eficiency (Gupta and Kling, 2009)
KGE(sim=sim, obs=obs)

KGE'': Kling-Gupta eficiency 2021 (Tang et al.,2021)
KGE(sim=sim, obs=obs, method="2021")

Traditional Nash-Sutcliffe eficiency (Nash and Sutcliffe, 1970)
NSE(sim=sim, obs=obs)

Weighted Nash-Sutcliffe efficiency (Hundecha and Bardossy, 2004)
wNSE(sim=sim, obs=obs)

wsNSE (Zambrano-Bigiarini and Bellin, 2012):
wsNSE(sim=sim, obs=obs)

APFB (Mizukami et al., 2019):
APFB(sim=sim, obs=obs)

##################
Example 4: Looking at the difference between 'KGE', 'NSE', 'wsNSE',
'dr', 'rd', 'md', and 'KGElf' for detecting
differences in low flows

Loading daily streamflows of the Ega River (Spain), from 1961 to 1970

66 KGEkm

data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Simulated daily time series, created equal to the observed values and then
random noise is added only to low flows, i.e., those equal or lower than
the quantile 0.4 of the observed values.
sim <- obs
lQ.thr <- quantile(obs, probs=0.4, na.rm=TRUE)
lQ.index <- which(obs <= lQ.thr)
lQ.n <- length(lQ.index)
sim[lQ.index] <- sim[lQ.index] + rnorm(lQ.n, mean=mean(sim[lQ.index], na.rm=TRUE))

KGEkm (Pizarro and Jorquera, 2024; method='2012')
KGEkm(sim=sim, obs=obs)

KGE': Kling-Gupta eficiency 2012 (Kling et al.,2012)
KGE(sim=sim, obs=obs, method="2012")

Traditional Kling-Gupta eficiency (Gupta and Kling, 2009)
KGE(sim=sim, obs=obs)

KGE'': Kling-Gupta eficiency 2021 (Tang et al.,2021)
KGE(sim=sim, obs=obs, method="2021")

Traditional Nash-Sutcliffe eficiency (Nash and Sutcliffe, 1970)
NSE(sim=sim, obs=obs)

Weighted seasonal Nash-Sutcliffe efficiency (Zambrano-Bigiarini and Bellin, 2012):
wsNSE(sim=sim, obs=obs, lambda=0.05, j=1/2)

Refined Index of Agreement (Willmott et al., 2012):
dr(sim=sim, obs=obs)

Relative Index of Agreement (Krause et al., 2005):
rd(sim=sim, obs=obs)

Modified Index of Agreement (Krause et al., 2005):
md(sim=sim, obs=obs)

KGElf (Garcia et al., 2017):
KGElf(sim=sim, obs=obs)

##################
Example 5: KGEkm for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

KGEkm(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)

KGEkm 67

KGEkm(sim=lsim, obs=lobs)

##################
Example 6: KGEkm for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

KGEkm(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGEkm(sim=lsim, obs=lobs)

##################
Example 7: KGEkm for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
KGEkm(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGEkm(sim=lsim, obs=lobs)

##################
Example 8: KGEkm for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
KGEkm(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGEkm(sim=lsim, obs=lobs)

##################
Example 9: KGEkm for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

68 KGElf

KGEkm(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
KGEkm(sim=sim1, obs=obs1)

KGElf Kling-Gupta Efficiency for low values

Description

Kling-Gupta efficiency between sim and obs, with focus on low (streamflow) values and treatment
of missing values.

This goodness-of-fit measure was developed by Garcia et al. (2017), as a modification to the original
Kling-Gupta efficiency (KGE) proposed by Gupta et al. (2009). See Details.

Usage

KGElf(sim, obs, ...)

Default S3 method:
KGElf(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012", "2021"),

epsilon.type=c("Pushpalatha2012", "otherFactor", "otherValue", "none"),
epsilon.value=NA, ...)

S3 method for class 'data.frame'
KGElf(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012", "2021"),

epsilon.type=c("Pushpalatha2012", "otherFactor", "otherValue", "none"),
epsilon.value=NA, ...)

S3 method for class 'matrix'
KGElf(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012", "2021"),

epsilon.type=c("Pushpalatha2012", "otherFactor", "otherValue", "none"),
epsilon.value=NA, ...)

S3 method for class 'zoo'
KGElf(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012", "2021"),

epsilon.type=c("Pushpalatha2012", "otherFactor", "otherValue", "none"),
epsilon.value=NA, ...)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

KGElf 69

s numeric of length 3, representing the scaling factors to be used for re-scaling
the criteria space before computing the Euclidean distance from the ideal point
c(1,1,1), i.e., s elements are used for adjusting the emphasis on different com-
ponents. The first elements is used for rescaling the Pearson product-moment
correlation coefficient (r), the second element is used for rescaling Alpha and
the third element is used for re-scaling Beta

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

method character, indicating the formula used to compute the variability ratio in the
Kling-Gupta efficiency. Valid values are:
-) 2009: the variability is defined as ‘Alpha’, the ratio of the standard deviation
of sim values to the standard deviation of obs. This is the default option. See
Gupta et al. (2009).
-) 2012: the variability is defined as ‘Gamma’, the ratio of the coefficient of
variation of sim values to the coefficient of variation of obs. See Kling et al.
(2012).
-) 2021: the bias is defined as ‘Beta’, the ratio of mean(sim) minus mean(obs)
to the standard deviation of obs. The variability is defined as ‘Alpha’, the ratio
of the standard deviation of sim values to the standard deviation of obs. See
Tang et al. (2021).

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is designed to allow the use of logarithm and other similar functions that do
not work with zero values.
Valid values of epsilon.type are:
1) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012). This is the default option.
2) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying FUN.
3) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.
4) "none": sim and obs are used by fun without the addition of any numeric
value.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

... further arguments passed to or from other methods.

70 KGElf

Details

Garcia et al. (2017) tested different objective functions and found that the mean value of the KGE
applied to the streamflows (i.e., KGE(Q)) and the KGE applied to the inverse of the streamflows
(i.e., KGE(1/Q) is able to provide a an aceptable representation of low-flow indices important for
water management. They also found that KGE applied to a transformation of streamflow values
(e.g., log) is inadequate to capture low-flow indices important for water management.

The robustness of their findings depends more on the climate variability rather than the objective
function, and they are insensitive to the hydrological model used in the evaluation.

KGElf =
KGE(Q) +KGE(1/Q)

2

Traditional Kling-Gupta efficiencies (Gupta et al., 2009; Kling et al., 2012) range from -Inf to 1
and, therefore, KGElf should also range from -Inf to 1. Essentially, the closer to 1, the more similar
sim and obs are.

Knoben et al. (2019) showed that traditional Kling-Gupta (Gupta et al., 2009; Kling et al., 2012)
values greater than -0.41 indicate that a model improves upon the mean flow benchmark, even if the
model’s KGE value is negative.

Value

numeric with the Kling-Gupta efficiency for low flows between sim and obs.

If sim and obs are matrices, the output value is a vector, with the Kling-Gupta efficiency between
each column of sim and obs

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano-Bigiarini <mzb.devel@gmail.com>

References

Garcia, F.; Folton, N.; Oudin, L. (2017). Which objective function to calibrate rainfall-runoff mod-
els for low-flow index simulations?. Hydrological sciences journal, 62(7), 1149-1166. doi:10.1080/02626667.2017.1308511.

Pushpalatha, R., Perrin, C., Le Moine, N. and Andreassian, V. (2012). A review of efficiency criteria
suitable for evaluating low-flow simulations. Journal of Hydrology, 420, 171-182. doi:10.1016/j.jhydrol.2011.11.055.

Pfannerstill, M.; Guse, B.; Fohrer, N. (2014). Smart low flow signature metrics for an improved
overall performance evaluation of hydrological models. Journal of Hydrology, 510, 447-458. doi:10.1016/j.jhydrol.2013.12.044.

KGElf 71

Gupta, H. V.; Kling, H.; Yilmaz, K. K.; Martinez, G. F. (2009). Decomposition of the mean squared
error and NSE performance criteria: Implications for improving hydrological modelling. Journal of
hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003. ISSN 0022-1694.

Kling, H.; Fuchs, M.; Paulin, M. (2012). Runoff conditions in the upper Danube basin under an en-
semble of climate change scenarios. Journal of Hydrology, 424, 264-277, doi:10.1016/j.jhydrol.2012.01.011.

Santos, L.; Thirel, G.; Perrin, C. (2018). Pitfalls in using log-transformed flows within the KGE
criterion. doi:10.5194/hess-22-4583-2018.

Knoben, W. J.; Freer, J. E.; Woods, R. A. (2019). Inherent benchmark or not? Comparing Nash-
Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-
4331. doi:10.5194/hess-23-4323-2019.

See Also

KGE, KGEnp, sKGE, gof, ggof

Examples

##################
Example1: basic ideal case
obs <- 1:10
sim <- 1:10
KGElf(sim, obs)

obs <- 1:10
sim <- 2:11
KGElf(sim, obs)

##################
Example2: Looking at the difference between 'method=2009' and 'method=2012'
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Simulated daily time series, initially equal to twice the observed values
sim <- 2*obs

KGE 2009
KGE(sim=sim, obs=obs, method="2009", out.type="full")

KGE 2012
KGE(sim=sim, obs=obs, method="2012", out.type="full")

KGElf (Garcia et al., 2017):
KGElf(sim=sim, obs=obs, method="2012")

##################
Example3: KGElf for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for low flows than
for medium and high flows.

72 KGElf

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim <- obs
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

Computing 'KGElf'
KGElf(sim=sim, obs=obs)

##################
Example 4: KGElf for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

KGElf(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
KGElf(sim=lsim, obs=lobs)

##################
Example 5: KGElf for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

KGElf(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGElf(sim=lsim, obs=lobs)

##################
Example 6: KGElf for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
KGElf(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGElf(sim=lsim, obs=lobs)

##################
Example 7: KGElf for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor

KGEnp 73

to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
KGElf(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGElf(sim=lsim, obs=lobs)

##################
Example 8: KGElf for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

KGElf(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
KGElf(sim=sim1, obs=obs1)

KGEnp Non-parametric version of the Kling-Gupta Efficiency

Description

Non-parametric Kling-Gupta efficiency between sim and obs, with treatment of missing values.

This goodness-of-fit measure was developed by Pool et al. (2018), as a non-parametric alternative
to the original Kling-Gupta efficiency (KGE) proposed by Gupta et al. (2009). See Details.

Usage

KGEnp(sim, obs, ...)

Default S3 method:
KGEnp(sim, obs, na.rm=TRUE, out.type=c("single", "full"), fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
KGEnp(sim, obs, na.rm=TRUE, out.type=c("single", "full"), fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

74 KGEnp

S3 method for class 'matrix'
KGEnp(sim, obs, na.rm=TRUE, out.type=c("single", "full"), fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
KGEnp(sim, obs, na.rm=TRUE, out.type=c("single", "full"), fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

out.type character, indicating the whether the output of the function has to include each
one of the three terms used in the computation of the Kling-Gupta efficiency or
not. Valid values are:
-) single: the output is a numeric with the Kling-Gupta efficiency only.
-) full: the output is a list of two elements: the first one with the Kling-Gupta
efficiency, and the second is a numeric with 3 elements: the Spearman rank
correlation coefficient (‘rSpearman’), the ratio between the mean of the simu-
lated values to the mean of observations (‘Beta’), and the variability measure
(‘Alpha’).

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth

KGEnp 75

(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

This non-paramettric verison of the Kling-Gupta efficiency keeps the bias term Alpha (mean(sim) /
mean(obs)), but for correlation uses the Spearman rank coefficient instead of the Pearson product-
moment coefficient; and for variability it uses the normalized flow-duration curve instead of the
standard deviation (or coefficient of variation).

The proposed non-parametric based multi-objective function can be seen as a useful alternative
to existing performance measures when aiming at acceptable simulations of multiple hydrograph
aspects (Pool et al., 2018).

KGEnp = 1− ED

ED =
√

((ρ− 1)2 + (α− 1)2 + (β − 1)2

ρ = Spearman rank correlation coefficient

α = 1− 0.5 ∗ sum(sim(I(k))/(n ∗ µs)− obs(J(k))/(n ∗ µo))

β = µs/µo

Traditional Kling-Gupta efficiencies (Gupta et al., 2009; Kling et al., 2012) range from -Inf to 1,
and therefore KGEnp should do so. Essentially, the closer to 1, the more similar sim and obs are.

Knoben et al. (2019) showed that traditional Kling-Gupta (Gupta et al., 2009; Kling et al., 2012)
values greater than -0.41 indicate that a model improves upon the mean flow benchmark, even if the
model’s KGE value is negative.

Value

numeric with the non-parametric Kling-Gupta efficiency between sim and obs.
If sim and obs are matrices, the output value is a vector, with the non-parametric Kling-Gupta
efficiency between each column of sim and obs

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

76 KGEnp

Author(s)

Mauricio Zambrano-Bigiarini <mzb.devel@gmail.com>

References

Pool, S.; Vis, M.; Seibert, J. (2018). Evaluating model performance: towards a non-parametric
variant of the Kling-Gupta efficiency. Hydrological Sciences Journal, 63(13-14), pp.1941-1953.
doi:/10.1080/02626667.2018.1552002.

Garcia, F.; Folton, N.; Oudin, L. (2017). Which objective function to calibrate rainfall-runoff mod-
els for low-flow index simulations?. Hydrological sciences journal, 62(7), 1149-1166. doi:10.1080/02626667.2017.1308511.

Gupta, H. V.; Kling, H.; Yilmaz, K. K.; Martinez, G. F. (2009). Decomposition of the mean squared
error and NSE performance criteria: Implications for improving hydrological modelling. Journal of
hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003. ISSN 0022-1694.

Kling, H.; Fuchs, M.; Paulin, M. (2012). Runoff conditions in the upper Danube basin under an en-
semble of climate change scenarios. Journal of Hydrology, 424, 264-277, doi:10.1016/j.jhydrol.2012.01.011.

Santos, L.; Thirel, G.; Perrin, C. (2018). Pitfalls in using log-transformed flows within the KGE
criterion. doi:10.5194/hess-22-4583-2018.

Knoben, W.J.; Freer, J.E.; Woods, R.A. (2019). Inherent benchmark or not? Comparing Nash-
Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-
4331. doi:10.5194/hess-23-4323-2019.

See Also

KGE, KGElf, sKGE, gof, ggof

Examples

Example1: basic ideal case
obs <- 1:10
sim <- 1:10
KGEnp(sim, obs)

obs <- 1:10
sim <- 2:11
KGEnp(sim, obs)

##################
Example2: Looking at the difference between 'method=2009' and 'method=2012'
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Simulated daily time series, initially equal to twice the observed values
sim <- 2*obs

KGE 2009
KGE(sim=sim, obs=obs, method="2009", out.type="full")

KGE 2012

KGEnp 77

KGE(sim=sim, obs=obs, method="2012", out.type="full")

KGEnp (Pool et al., 2018):
KGEnp(sim=sim, obs=obs)

##################
Example3: KGEnp for simulated values equal to observations plus random noise
on the first half of the observed values
Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim <- obs
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)

Computing the new 'KGEnp'
KGEnp(sim=sim, obs=obs)

Randomly changing the first 2000 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)

Computing the new 'KGEnp'
KGEnp(sim=sim, obs=obs)

##################
Example 4: KGEnp for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

KGEnp(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
KGEnp(sim=lsim, obs=lobs)

##################
Example 5: KGEnp for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

KGEnp(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGEnp(sim=lsim, obs=lobs)

##################
Example 6: KGEnp for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant

78 mae

during computations

eps <- 0.01
KGEnp(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGEnp(sim=lsim, obs=lobs)

##################
Example 7: KGEnp for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
KGEnp(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGEnp(sim=lsim, obs=lobs)

##################
Example 8: KGEnp for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

KGEnp(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
KGEnp(sim=sim1, obs=obs1)

mae Mean Absolute Error

Description

Mean absolute error between sim and obs, in the same units of them, with treatment of missing
values.

mae 79

Usage

mae(sim, obs, ...)

Default S3 method:
mae(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
mae(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
mae(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
mae(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).

80 mae

3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

mae =
1

N

N∑
i=1

|Si −Oi)|

Value

Mean absolute error between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the mean absolute error between
each column of sim and obs.

Note

obs and sim have to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

https://en.wikipedia.org/wiki/Mean_absolute_error

Willmott, C.J.; Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root
mean square error (RMSE) in assessing average model performance, Climate Research, 30, 79-82,
doi:10.3354/cr030079.

Chai, T.; Draxler, R.R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?
- Arguments against avoiding RMSE in the literature, Geoscientific Model Development, 7, 1247-
1250. doi:10.5194/gmd-7-1247-2014.

Hodson, T.O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use
them or not, Geoscientific Model Development, 15, 5481-5487, doi:10.5194/gmd-15-5481-2022.

https://en.wikipedia.org/wiki/Mean_absolute_error

mae 81

See Also

pbias, pbiasfdc, mse, rmse, ubRMSE, nrmse, ssq, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
mae(sim, obs)

obs <- 1:10
sim <- 2:11
mae(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'mae' for the "best" (unattainable) case
mae(sim=sim, obs=obs)

##################
Example 3: mae for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

mae(sim=sim, obs=obs)

##################
Example 4: mae for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

mae(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
mae(sim=lsim, obs=lobs)

82 mae

##################
Example 5: mae for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

mae(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
mae(sim=lsim, obs=lobs)

##################
Example 6: mae for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
mae(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
mae(sim=lsim, obs=lobs)

##################
Example 7: mae for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
mae(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
mae(sim=lsim, obs=lobs)

##################
Example 8: mae for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

mae(sim=sim, obs=obs, fun=fun1)

md 83

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
mae(sim=sim1, obs=obs1)

md Modified Index of Agreement

Description

This function computes the modified Index of Agreement between sim and obs, with treatment of
missing values.

Usage

md(sim, obs, ...)

Default S3 method:
md(sim, obs, j=1, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
md(sim, obs, j=1, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
md(sim, obs, j=1, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
md(sim, obs, j=1, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values
obs numeric, zoo, matrix or data.frame with observed values
j numeric, with the exponent to be used in the computation of the modified index

of agreement. The default value is j=1.
na.rm a logical value indicating whether ’NA’ should be stripped before the computa-

tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

84 md

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the modified index of agreement.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.
epsilon.type argument used to define a numeric value to be added to both sim and obs before

applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any nummeric
value.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value numeric value to be added to both sim and obs when epsilon.type="otherValue".

Details

md = 1−
∑N

i=1 |Oi − Si|j∑N
i=1

∣∣Si − Ō
∣∣+
∣∣Oi − Ō

∣∣j
The Index of Agreement (d) developed by Willmott (1981) as a standardized measure of the degree
of model prediction error and varies between 0 and 1.
A value of 1 indicates a perfect match, and 0 indicates no agreement at all (Willmott, 1981).

The index of agreement can detect additive and proportional differences in the observed and sim-
ulated means and variances; however, it is overly sensitive to extreme values due to the squared
differences (Legates and McCabe, 1999).

Value

Modified index of agreement between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the modified index of agreement
between each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

md 85

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Krause, P.; Boyle, D.P.; Base, F. (2005). Comparison of different efficiency criteria for hydrological
model assessment, Advances in Geosciences, 5, 89-97. doi:10.5194/adgeo-5-89-2005.

Willmott, C.J. (1981). On the validation of models. Physical Geography, 2, 184–194. doi:10.1080/02723646.1981.10642213.

Willmott, C.J. (1984). On the evaluation of model performance in physical geography. Spatial
Statistics and Models, G. L. Gaile and C. J. Willmott, eds., 443-460. doi:10.1007/978-94-017-
3048-8_23.

Willmott, C.J.; Ackleson, S.G. Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell,
J.; Rowe, C.M. (1985), Statistics for the Evaluation and Comparison of Models, J. Geophys. Res.,
90(C5), 8995-9005. doi:10.1029/JC090iC05p08995.

Legates, D.R.; McCabe, G. J. Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in Hy-
drologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241. doi:10.1029/1998WR900018.

See Also

d, dr, rd, gof, ggof

Examples

obs <- 1:10
sim <- 1:10
md(sim, obs)

obs <- 1:10
sim <- 2:11
md(sim, obs)

##################
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the modified index of agreement for the "best" (unattainable) case
md(sim=sim, obs=obs)

Randomly changing the first 2000 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)

Computing the new 'd1'
md(sim=sim, obs=obs)

86 me

me Mean Error

Description

Mean error between sim and obs, in the same units of them, with treatment of missing values.

Usage

me(sim, obs, ...)

Default S3 method:
me(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
me(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
me(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
me(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

me 87

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

me =
1

N

N∑
i=1

(Si −Oi))

Value

Mean error between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the mean error between each column
of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

88 me

References

Hill, T.; Lewicki, P.; Lewicki, P. (2006). Statistics: methods and applications: a comprehensive
reference for science, industry, and data mining. StatSoft, Inc.

See Also

mae, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
me(sim, obs)

obs <- 1:10
sim <- 2:11
me(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'me' for the "best" (unattainable) case
me(sim=sim, obs=obs)

##################
Example 3: me for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

me(sim=sim, obs=obs)

##################
Example 4: me for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

me(sim=sim, obs=obs, fun=log)

me 89

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
me(sim=lsim, obs=lobs)

##################
Example 5: me for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

me(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
me(sim=lsim, obs=lobs)

##################
Example 6: me for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
me(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
me(sim=lsim, obs=lobs)

##################
Example 7: me for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
me(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
me(sim=lsim, obs=lobs)

##################
Example 8: me for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

90 mNSE

fun1 <- function(x) {sqrt(x+1)}

me(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
me(sim=sim1, obs=obs1)

mNSE Modified Nash-Sutcliffe efficiency

Description

Modified Nash-Sutcliffe efficiency between sim and obs, with treatment of missing values.

Usage

mNSE(sim, obs, ...)

Default S3 method:
mNSE(sim, obs, j=1, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
mNSE(sim, obs, j=1, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
mNSE(sim, obs, j=1, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
mNSE(sim, obs, j=1, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

j numeric, with the exponent to be used in the computation of the modified Nash-
Sutcliffe efficiency. The default value is j=1.

mNSE 91

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the Nash-Sutcliffe efficiency.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying FUN.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by FUN without the addition of any nummeric
value.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying FUN, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying FUN.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying FUN.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

mNSE = 1−
∑N

i=1 |Si −Oi|j∑N
i=1

∣∣Oi − Ō
∣∣j

When j=1, the modified NSeff is not inflated by the squared values of the differences, because the
squares are replaced by absolute values.

Value

Modified Nash-Sutcliffe efficiency between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the modified Nash-Sutcliffe effi-
ciency between each column of sim and obs.

92 mNSE

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Krause, P.; Boyle, D.P.; Base, F. (2005). Comparison of different efficiency criteria for hydrological
model assessment, Advances in Geosciences, 5, 89-97. doi:10.5194/adgeo-5-89-2005.

Legates, D.R.; McCabe, G. J. Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in Hy-
drologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241. doi:10.1029/1998WR900018.

See Also

NSE, rNSE, wNSE, KGE, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
mNSE(sim, obs)

obs <- 1:10
sim <- 2:11
mNSE(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'mNSE' for the "best" (unattainable) case
mNSE(sim=sim, obs=obs)

##################
Example 3: mNSE for simulated values equal to observations plus random noise
on the first half of the observed values.

mNSE 93

This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

mNSE(sim=sim, obs=obs)

##################
Example 4: mNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

mNSE(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
mNSE(sim=lsim, obs=lobs)

##################
Example 5: mNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

mNSE(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
mNSE(sim=lsim, obs=lobs)

##################
Example 6: mNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
mNSE(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
mNSE(sim=lsim, obs=lobs)

##################
Example 7: mNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)

94 mse

logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
mNSE(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
mNSE(sim=lsim, obs=lobs)

##################
Example 8: mNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

mNSE(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
mNSE(sim=sim1, obs=obs1)

mse Mean Squared Error

Description

Mean squared error between sim and obs, in the squared units of sim and obs, with treatment of
missing values.

Usage

mse(sim, obs, ...)

Default S3 method:
mse(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
mse(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

mse 95

S3 method for class 'matrix'
mse(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
mse(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

96 mse

Details

mse =
1

N

N∑
i=1

(Si −Oi)
2

Value

Mean squared error between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the mean squared error between
each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Yapo P.O.; Gupta H.V.; Sorooshian S. (1996). Automatic calibration of conceptual rainfall-runoff
models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23-48. doi:10.1016/0022-
1694(95)02918-4

Gupta, H.V.; Kling, H. (2011). On typical range, sensitivity, and normalization of Mean Squared Er-
ror and Nash-Sutcliffe Efficiency type metrics. Water Resources Research, 47(10). doi:10.1029/2011WR010962.

Willmott, C.J.; Matsuura, K.; Robeson, S.M. (2009). Ambiguities inherent in sums-of-squares-
based error statistics, Atmospheric Environment, 43, 749-752, doi:10.1016/j.atmosenv.2008.10.005.

See Also

pbias, pbiasfdc, mae, rmse, ubRMSE, nrmse, ssq, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
mse(sim, obs)

obs <- 1:10
sim <- 2:11

mse 97

mse(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'mse' for the "best" (unattainable) case
mse(sim=sim, obs=obs)

##################
Example 3: mse for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

mse(sim=sim, obs=obs)

##################
Example 4: mse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

mse(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
mse(sim=lsim, obs=lobs)

##################
Example 5: mse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

mse(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
mse(sim=lsim, obs=lobs)

98 nrmse

##################
Example 6: mse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
mse(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
mse(sim=lsim, obs=lobs)

##################
Example 7: mse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
mse(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
mse(sim=lsim, obs=lobs)

##################
Example 8: mse for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

mse(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
mse(sim=sim1, obs=obs1)

nrmse Normalized Root Mean Square Error

Description

Normalized root mean square error (NRMSE) between sim and obs, with treatment of missing
values.

nrmse 99

Usage

nrmse(sim, obs, ...)

Default S3 method:
nrmse(sim, obs, na.rm=TRUE, norm="sd", fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
nrmse(sim, obs, na.rm=TRUE, norm="sd", fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
nrmse(sim, obs, na.rm=TRUE, norm="sd", fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
nrmse(sim, obs, na.rm=TRUE, norm="sd", fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

norm character, indicating the value to be used for normalising the root mean square
error (RMSE). Valid values are:
-) sd : standard deviation of observations (default).
-) maxmin: difference between the maximum and minimum observed values

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:

100 nrmse

1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

nrmse = 100

√
1
N

∑N
i=1 (Si −Oi)

2

nval

nval =

{
sd(Oi) , norm="sd"

Omax −Omin , norm="maxmin"

Value

Normalized root mean square error (nrmse) between sim and obs. The result is given in percentage
(%)

If sim and obs are matrixes, the returned value is a vector, with the normalized root mean square
error between each column of sim and obs.

Note

obs and sim have to have the same length/dimension

Missing values in obs and sim are removed before the computation proceeds, and only those posi-
tions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

See Also

pbias, pbiasfdc, mae, mse, rmse, ubRMSE, ssq, gof, ggof

nrmse 101

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
nrmse(sim, obs)

obs <- 1:10
sim <- 2:11
nrmse(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'nrmse' for the "best" (unattainable) case
nrmse(sim=sim, obs=obs)

##################
Example 3: nrmse for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

nrmse(sim=sim, obs=obs)

##################
Example 4: nrmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

nrmse(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
nrmse(sim=lsim, obs=lobs)

##################
Example 5: nrmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant

102 nrmse

during computations

nrmse(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
nrmse(sim=lsim, obs=lobs)

##################
Example 6: nrmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
nrmse(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
nrmse(sim=lsim, obs=lobs)

##################
Example 7: nrmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
nrmse(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
nrmse(sim=lsim, obs=lobs)

##################
Example 8: nrmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

nrmse(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
nrmse(sim=sim1, obs=obs1)

NSE 103

NSE Nash-Sutcliffe Efficiency

Description

Nash-Sutcliffe efficiency between sim and obs, with treatment of missing values.

Usage

NSE(sim, obs, ...)

Default S3 method:
NSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
NSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
NSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
NSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the Nash-Sutcliffe efficiency.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

104 NSE

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying FUN.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the mean of the observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

NSE = 1−
∑N

i=1 (Si −Oi)
2∑N

i=1

(
Oi − Ō

)2
The Nash-Sutcliffe efficiency (NSE) is a normalized statistic that determines the relative magnitude
of the residual variance ("noise") compared to the measured data variance ("information") (Nash
and Sutcliffe, 1970).

NSE indicates how well the plot of observed versus simulated data fits the 1:1 line.

Nash-Sutcliffe efficiencies range from -Inf to 1. Essentially, the closer to 1, the more accurate the
model is.
-) NSE = 1, corresponds to a perfect match of modelled to the observed data.
-) NSE = 0, indicates that the model predictions are as accurate as the mean of the observed data,
-) -Inf < NSE < 0, indicates that the observed mean is better predictor than the model.

Value

Nash-Sutcliffe efficiency between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the Nash-Sutcliffe efficiency be-
tween each column of sim and obs.

NSE 105

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

https://en.wikipedia.org/wiki/Nash%E2%80%93Sutcliffe_model_efficiency_coefficient

Nash, J.E. and Sutcliffe, J.V. (1970). River flow forecasting through conceptual models. Part 1: a
discussion of principles, Journal of Hydrology 10, pp. 282-290. doi:10.1016/0022-1694(70)90255-
6.

Garrick, M.; Cunnane, C.; Nash, J.E. (1978). A criterion of efficiency for rainfall-runoff models.
Journal of Hydrology 36, 375-381. doi:10.1016/0022-1694(78)90155-5.

Schaefli, B., Gupta, H. (2007). Do Nash values have value?. Hydrological Processes 21, 2075-2080.
doi:10.1002/hyp.6825.

Criss, R. E.; Winston, W. E. (2008), Do Nash values have value? Discussion and alternate proposals.
Hydrological Processes, 22: 2723-2725. doi:10.1002/hyp.7072.

Gupta, H.V.; Kling, H. (2011). On typical range, sensitivity, and normalization of Mean Squared Er-
ror and Nash-Sutcliffe Efficiency type metrics. Water Resources Research, 47(10). doi:10.1029/2011WR010962.

Pushpalatha, R.; Perrin, C.; Le Moine, N.; Andreassian, V. (2012). A review of efficiency criteria
suitable for evaluating low-flow simulations. Journal of Hydrology, 420, 171-182. doi:10.1016/j.jhydrol.2011.11.055.

Knoben, W. J.; Freer, J. E.; Woods, R. A. (2019). Inherent benchmark or not? Comparing Nash-
Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-
4331. doi:10.5194/hess-23-4323-2019.

See Also

mNSE, rNSE, wNSE, KGE, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
NSE(sim, obs)

obs <- 1:10
sim <- 2:11
NSE(sim, obs)

##################

https://en.wikipedia.org/wiki/Nash%E2%80%93Sutcliffe_model_efficiency_coefficient

106 NSE

Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'NSE' for the "best" (unattainable) case
NSE(sim=sim, obs=obs)

##################
Example 3: NSE for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

NSE(sim=sim, obs=obs)

##################
Example 4: NSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

NSE(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
NSE(sim=lsim, obs=lobs)

##################
Example 5: NSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

NSE(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
NSE(sim=lsim, obs=lobs)

##################
Example 6: NSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)

pbias 107

logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
NSE(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
NSE(sim=lsim, obs=lobs)

##################
Example 7: NSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
NSE(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
NSE(sim=lsim, obs=lobs)

##################
Example 8: NSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

NSE(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
NSE(sim=sim1, obs=obs1)

pbias Percent Bias

Description

Percent Bias between sim and obs, with treatment of missing values.

108 pbias

Usage

pbias(sim, obs, ...)

Default S3 method:
pbias(sim, obs, na.rm=TRUE, dec=1, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
pbias(sim, obs, na.rm=TRUE, dec=1, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
pbias(sim, obs, na.rm=TRUE, dec=1, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
pbias(sim, obs, na.rm=TRUE, dec=1, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

dec numeric, specifying the number of decimal places used to rounf the output ob-
ject. Default value is 1.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.

pbias 109

2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

PBIAS = 100

∑N
i=1 (Si −Oi)∑N

i=1Oi

Percent bias (PBIAS) measures the average tendency of the simulated values to be larger or smaller
than their observed ones.

The optimal value of PBIAS is 0.0, with low-magnitude values indicating accurate model simula-
tion. Positive values indicate overestimation bias, whereas negative values indicate model underes-
timation bias

Value

Percent bias between sim and obs. The result is given in percentage (%)

If sim and obs are matrixes, the returned value is a vector, with the percent bias between each
column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

110 pbias

References

Yapo, P.O.; Gupta, H.V.; Sorooshian S. (1996). Automatic calibration of conceptual rainfall-runoff
models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23–48. doi:10.1016/0022-
1694(95)02918-4

Sorooshian, S., Q. Duan, and V. K. Gupta. 1993. Calibration of rainfall-runoff models: Applica-
tion of global optimization to the Sacramento Soil Moisture Accounting Model, Water Resources
Research, 29 (4), 1185-1194, doi:10.1029/92WR02617.

See Also

pbias, pbiasfdc, mae, mse, rmse, ubRMSE, nrmse, ssq, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
pbias(sim, obs)

obs <- 1:10
sim <- 2:11
pbias(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'pbias' for the "best" (unattainable) case
pbias(sim=sim, obs=obs)

##################
Example 3: pbias for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

pbias(sim=sim, obs=obs)

##################
Example 4: pbias for simulated values equal to observations plus random noise

pbias 111

on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

pbias(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
pbias(sim=lsim, obs=lobs)

##################
Example 5: pbias for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

pbias(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
pbias(sim=lsim, obs=lobs)

##################
Example 6: pbias for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
pbias(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
pbias(sim=lsim, obs=lobs)

##################
Example 7: pbias for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
pbias(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
pbias(sim=lsim, obs=lobs)

112 pbiasfdc

##################
Example 8: pbias for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

pbias(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
pbias(sim=sim1, obs=obs1)

pbiasfdc Percent Bias in the Slope of the Midsegment of the Flow Duration
Curve

Description

Percent Bias in the slope of the midsegment of the flow duration curve (FDC) [%]. It is related to
the vertical soil moisture redistribution.

Usage

pbiasfdc(sim, obs, ...)

Default S3 method:
pbiasfdc(sim, obs, lQ.thr=0.6, hQ.thr=0.1, na.rm=TRUE,

plot=TRUE, verbose=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
pbiasfdc(sim, obs, lQ.thr=0.6, hQ.thr=0.1, na.rm=TRUE,

plot=TRUE, verbose=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
pbiasfdc(sim, obs, lQ.thr=0.6, hQ.thr=0.1, na.rm=TRUE,

plot=TRUE, verbose=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'

pbiasfdc 113

pbiasfdc(sim, obs, lQ.thr=0.6, hQ.thr=0.1, na.rm=TRUE,
plot=TRUE, verbose=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

lQ.thr numeric, used to classify low flows. All the streamflows with a probability of
exceedence larger or equal to lQ.thr are classified as low flows

hQ.thr numeric, used to classify high flows. All the streamflows with a probability of
exceedence larger or equal to hQ.thr are classified as high flows

na.rm a logical value indicating whether ’NA’ values should be stripped before the
computation proceeds.

plot a logical value indicating if the flow duration curves corresponding to obs and
sim have to be plotted or not.

verbose logical; if TRUE, progress messages are printed

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

114 pbiasfdc

Value

Percent Bias in the slope of the midsegment of the flow duration curve, between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the Percent Bias in the slope of the
midsegment of the flow duration curve, between each column of sim and obs.

Note

The result is given in percentage (%).

It requires the hydroTSM package.

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Yilmaz, K.K., Gupta, H.V. ; Wagener, T. (2008), A process-based diagnostic approach to model
evaluation: Application to the NWS distributed hydrologic model, Water Resources Research, 44,
W09417, doi:10.1029/2007WR006716.

See Also

fdc, pbias, mae, mse, rmse, ubRMSE, nrmse, ssq, gof, ggof

Examples

Not run:
##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
pbiasfdc(sim, obs)

obs <- 1:10
sim <- 2:11
pbiasfdc(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'pbiasfdc' for the "best" (unattainable) case
pbiasfdc(sim=sim, obs=obs)

pbiasfdc 115

##################
Example 3: pbiasfdc for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

pbiasfdc(sim=sim, obs=obs)

##################
Example 4: pbiasfdc for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

pbiasfdc(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
pbiasfdc(sim=lsim, obs=lobs)

##################
Example 5: pbiasfdc for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

pbiasfdc(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
pbiasfdc(sim=lsim, obs=lobs)

##################
Example 6: pbiasfdc for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
pbiasfdc(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
pbiasfdc(sim=lsim, obs=lobs)

116 pfactor

##################
Example 7: pbiasfdc for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
pbiasfdc(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
pbiasfdc(sim=lsim, obs=lobs)

##################
Example 8: pbiasfdc for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

pbiasfdc(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
pbiasfdc(sim=sim1, obs=obs1)

End(Not run)

pfactor P-factor

Description

P-factor is the percent of observations that are within the given uncertainty bounds.

Ideally, i.e., with a combination of model structure and parameter values that perfectly represents
the catchment under study, and in absence of measurement errors and other additional sources of
uncertainty, all the simulated values should be in a perfect match with the observations, leading to
a P-factor equal to 1, and an R-factor equal to zero. However, in real-world applications we aim at
encompassing as much observations as possible within the given uncertainty bounds (P-factor close
to 1) while keeping the width of the uncertainty bounds as small as possible (R-factor close to 0),
in order to avoid obtaining a good bracketing of observations at expense of uncertainty bounds too
wide to be informative for the decision-making process.

pfactor 117

Usage

pfactor(x, ...)

Default S3 method:
pfactor(x, lband, uband, na.rm=TRUE, ...)

S3 method for class 'data.frame'
pfactor(x, lband, uband, na.rm=TRUE, ...)

S3 method for class 'matrix'
pfactor(x, lband, uband, na.rm=TRUE, ...)

Arguments

x ts or zoo object with the observed values.

lband numeric, ts or zoo object with the values of the lower uncertainty bound

uband numeric, ts or zoo object with the values of the upper uncertainty bound

na.rm a logical value indicating whether ’NA’ values should be stripped before the
computation proceeds.

... further arguments passed to or from other methods.

Value

Percent of the x observations that are within the given uncertainty bounds given by lband and
uband.

If sim and obs are matrixes, the returned value is a vector, with the P-factor between each column
of sim and obs.

Note

So far, the argument na.rm is not being taken into account.

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. (2009), Assessing the impact of climate
change on water resources in Iran, Water Resources Research, 45(10), W10,434, doi:10.1029/2008WR007615.

Abbaspour, K.C., Yang, J. ; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J. ; Zobrist, J.; Srini-
vasan, R. (2007), Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed
using SWAT, Journal of Hydrology, 333(2-4), 413-430, doi:10.1016/j.jhydrol.2006.09.014.

Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. (2008b), Estimation of freshwater availability
in the West African sub-continent using the SWAT hydrologic model, Journal of Hydrology, 352(1-
2), 30, doi:10.1016/j.jhydrol.2007.12.025

118 plot2

Abbaspour, K.C. (2007), User manual for SWAT-CUP, SWAT calibration and uncertainty analysis
programs, 93pp, Eawag: Swiss Fed. Inst. of Aquat. Sci. and Technol. Dubendorf, Switzerland.

See Also

rfactor, plotbands

Examples

x <- 1:10
lband <- x - 0.1
uband <- x + 0.1
pfactor(x, lband, uband)

lband <- x - rnorm(10)
uband <- x + rnorm(10)
pfactor(x, lband, uband)

#############
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Selecting only the daily values belonging to the year 1961
obs <- window(obs, end=as.Date("1961-12-31"))

Generating the lower and upper uncertainty bounds, centred at the observations
lband <- obs - 5
uband <- obs + 5

pfactor(obs, lband, uband)

Randomly generating the lower and upper uncertainty bounds
uband <- obs + rnorm(length(obs))
lband <- obs - rnorm(length(obs))

pfactor(obs, lband, uband)

plot2 Plotting 2 Time Series

Description

Plotting of 2 time series, in two different vertical windows or overlapped in the same window.
It requires the hydroTSM package.

plot2 119

Usage

plot2(x, y, plot.type = "multiple",
tick.tstep = "auto", lab.tstep = "auto", lab.fmt=NULL,
main, xlab = "Time", ylab,
cal.ini=NA, val.ini=NA, date.fmt="%Y-%m-%d",
gof.leg = FALSE, gof.digits=2,
gofs=c("ME", "MAE", "RMSE", "NRMSE", "PBIAS", "RSR", "rSD", "NSE", "mNSE",

"rNSE", "d", "md", "rd", "r", "R2", "bR2", "KGE", "VE"),
legend, leg.cex = 1,
col = c("black", "blue"),
cex = c(0.5, 0.5), cex.axis=1.2, cex.lab=1.2,
lwd= c(1,1), lty=c(1,3), pch = c(1, 9),
pt.style = "ts", add = FALSE,
...)

Arguments

x time series that will be plotted. class(x) must be ts or zoo. If leg.gof=TRUE,
then x is considered as simulated (for some goodness-of-fit functions this is
important)

y time series that will be plotted. class(x) must be ts or zoo. If leg.gof=TRUE,
then y is considered as observed values (for some goodness-of-fit functions this
is important)

plot.type character, indicating if the 2 ts have to be plotted in the same window or in two
different vertical ones. Valid values are:
-) single : (default) superimposes the 2 ts on a single plot
-) multiple: plots the 2 series on 2 multiple vertical plots

tick.tstep character, indicating the time step that have to be used for putting the ticks on the
time axis. Valid values are: auto, years, months,weeks, days, hours, minutes,
seconds.

lab.tstep character, indicating the time step that have to be used for putting the labels
on the time axis. Valid values are: auto, years, months,weeks, days, hours,
minutes, seconds.

lab.fmt Character indicating the format to be used for the label of the axis. See lab.fmt
in drawTimeAxis.

main an overall title for the plot: see title

xlab label for the ’x’ axis
ylab label for the ’y’ axis
cal.ini OPTIONAL. Character, indicating the date in which the calibration period started.

When cal.ini is provided, all the values in obs and sim with dates previous
to cal.ini are SKIPPED from the computation of the goodness-of-fit measures
(when gof.leg=TRUE), but their values are still plotted, in order to examine if
the warming up period was too short, acceptable or too long for the chosen cal-
ibration period. In addition, a vertical red line in drawn at this date.

val.ini OPTIONAL. Character with the date in which the validation period started.
ONLY used for drawing a vertical red line at this date.

120 plot2

date.fmt OPTIONAL. Character indicating the format in which the dates entered are
stored in cal.ini and val.ini. Default value is %Y-%m-%d. ONLY required
when cal.ini or val.ini is provided.

gof.leg logical, indicating if several numerical goodness-of-fit values have to be com-
puted between sim and obs, and plotted as a legend on the graph. If gof.leg=TRUE
(default value), then x is considered as observed and y as simulated values
(for some gof functions this is important). This legend is ONLY plotted when
plot.type="single"

gof.digits OPTIONAL, only used when gof.leg=TRUE. Decimal places used for rounding
the goodness-of-fit indexes.

gofs character, with one or more strings indicating the goodness-of-fit measures to be
shown in the legend of the plot when gof.leg=TRUE.
Possible values are in c("ME", "MAE", "MSE", "RMSE", "NRMSE", "PBIAS",
"RSR", "rSD", "NSE", "mNSE", "rNSE", "d", "md", "rd", "cp", "r", "R2",
"bR2", "KGE", "VE").

legend vector of length 2 to appear in the legend.

leg.cex numeric, indicating the character expansion factor *relative* to current ’par("cex")’.
Used for text, and provides the default for ’pt.cex’ and ’title.cex’. Default value
= 1
So far, it controls the expansion factor of the ’GoF’ legend and the legend refer-
ring to x and y

col character, with the colors of x and y

cex numeric, with the values controlling the size of text and symbols of x and y with
respect to the default

cex.axis numeric, with the magnification of axis annotation relative to ’cex’. See par.

cex.lab numeric, with the magnification to be used for x and y labels relative to the
current setting of ’cex’. See par.

lwd vector with the line width of x and y

lty vector with the line type of x and y

pch vector with the type of symbol for x and y. (e.g.: 1: white circle; 9: white
rhombus with a cross inside)

pt.style Character, indicating if the 2 ts have to be plotted as lines or bars. Valid values
are:
-) ts : (default) each ts is plotted as a lines along the x axis
-) bar: the 2 series are plotted as a barplot.

add logical indicating if other plots will be added in further calls to this function.
-) FALSE => the plot and the legend are plotted on the same graph
-) TRUE => the legend is plotted in a new graph, usually when called from another
function (e.g.: ggof)

... further arguments passed to plot.zoo function for plotting x, or from other
methods

Note

It requires the package hydroTSM.

plotbands 121

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

See Also

ggof, plot_pq

Examples

sim <- 2:11
obs <- 1:10
Not run:
plot2(sim, obs)

End(Not run)

##################
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Randomly changing the first 2000 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)

Plotting 'sim' and 'obs' in 2 separate panels
plot2(x=obs, y=sim)

Plotting 'sim' and 'obs' in the same window
plot2(x=obs, y=sim, plot.type="single")

plotbands Plot a ts with observed values and two confidence bounds

Description

It plots a ts with observed values and two confidence bounds. Optionally can also add a simulated
time series, in order to be compared with ’x’.

Usage

plotbands(x, lband, uband, sim,
dates, date.fmt="%Y-%m-%d",
gof.leg= TRUE, gof.digits=2,
legend=c("Obs", "Sim", "95PPU"), leg.cex=1,
bands.col="lightblue", border= NA,

122 plotbands

tick.tstep= "auto", lab.tstep= "auto", lab.fmt=NULL,
cal.ini=NA, val.ini=NA,
main="Confidence Bounds for 'x'",
xlab="Time", ylab="Q, [m3/s]", ylim,
col=c("black", "blue"), type= c("lines", "lines"),
cex= c(0.5, 0.5), cex.axis=1.2, cex.lab=1.2,
lwd=c(0.6, 1), lty=c(3, 4), pch=c(1,9), ...)

Arguments

x zoo or xts object with the observed values.

lband zoo or xts object with the values of the lower band.

uband zoo or xts object with the values of the upper band.

sim OPTIONAL. zoo or xts object with the simulated values.

dates OPTIONAL. Date, factor, or character object indicating the dates that will be
assigned to x, lband, uband, and sim (when provided).
If dates is a factor or character vector, its values are converted to dates using
the date format specified by date.fmt.
When x, lband, uband, and sim are already of zoo class, the values provided
by dates over-write the original dates of the objects.

date.fmt OPTIONAL. Character indicating the format in which the dates entered are
stored in cal.ini and val.ini. See format in as.Date.
Default value is %Y-%m-%d
ONLY required when cal.ini, val.ini or dates is provided.

gof.leg logical indicating if the p-factor and r-factor have to be computed and plotted as
legends on the graph.

gof.digits OPTIONAL, numeric. Only used when gof.leg=TRUE. Decimal places used
for rounding the goodness-of-fit indexes

legend OPTIONAL. logical or character vector of length 3 with the strings that will be
used for the legend of the plot.
-) When legend is a character vector, the first element is used for labelling
the observed series, the second for labelling the simulated series and the third
one for the predictive uncertainty bounds. Default value is c("obs", "sim",
"95PPU")
-) When legend=FALSE, the legend is not drawn.

leg.cex OPTIONAL. numeric. Used for the GoF legend. Character expansion factor
relative to current ’par("cex")’. Used for text, and provides the default for
’pt.cex’ and ’title.cex’. Default value is 1.

bands.col See polygon. Color to be used for filling the area between the lower and upper
uncertainty bound.

border See polygon. The color to draw the border. The default, ’NULL’, means to use
’par("fg")’. Use ’border = NA’ to omit borders.

tick.tstep character, indicating the time step that have to be used for putting the ticks on the
time axis. Valid values are: auto, years, months,weeks, days, hours, minutes,
seconds.

plotbands 123

lab.tstep character, indicating the time step that have to be used for putting the labels
on the time axis. Valid values are: auto, years, months,weeks, days, hours,
minutes, seconds.

lab.fmt Character indicating the format to be used for the label of the axis. See lab.fmt
in drawTimeAxis.

cal.ini OPTIONAL. Character with the date in which the calibration period started.
ONLY used for drawing a vertical red line at this date.

val.ini OPTIONAL. Character with the date in which the validation period started.
ONLY used for drawing a vertical red line at this date.

main an overall title for the plot: see ’title’

xlab a title for the x axis: see ’title’

ylab a title for the y axis: see ’title’

ylim the y limits of the plot. See plot.default.

col colors to be used for plotting the x and sim ts.

type character. Indicates if the observed and simulated series have to be plotted as
lines or points. Possible values are:
-) lines : the observed/simulated series are plotted as lines
-) points: the observed/simulated series are plotted as points

cex See code plot.default. A numerical vector giving the amount by which plotting
characters and symbols should be scaled relative to the default.
This works as a multiple of ’par("cex")’. ’NULL’ and ’NA’ are equivalent to
’1.0’. Note that this does not affect annotation.

cex.axis magnification of axis annotation relative to ’cex’.

cex.lab Magnification to be used for x and y labels relative to the current setting of ’cex’.
See ’?par’.

lwd See plot.default. The line width, see ’par’.

lty See plot.default. The line type, see ’par’.

pch numeric, with the type of symbol for x and y. (e.g.: 1: white circle; 9: white
rhombus with a cross inside)

... further arguments passed to the points function for plotting x, or from other
methods

Note

It requires the hydroTSM package

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

See Also

pfactor, rfactor

124 plotbandsonly

Examples

Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Selecting only the daily values belonging to the year 1961
obs <- window(obs, end=as.Date("1961-12-31"))

Generating the lower and upper uncertainty bounds
lband <- obs - 5
uband <- obs + 5

Not run:
plotbands(obs, lband, uband)

End(Not run)

Randomly generating a simulated time series
sim <- obs + rnorm(length(obs), mean=3)

Not run:
plotbands(obs, lband, uband, sim)

End(Not run)

plotbandsonly Adds uncertainty bounds to an existing plot.

Description

Adds a polygon representing uncertainty bounds to an existing plot.

Usage

plotbandsonly(lband, uband, dates, date.fmt="%Y-%m-%d",
bands.col="lightblue", border= NA, ...)

Arguments

lband zoo or xts object with the values of the lower band.

uband zoo or xts object with the values of the upper band.

dates OPTIONAL. Date, factor, or character object indicating the dates that will be
assigned to lband and uband.
If dates is a factor or character vector, its values are converted to dates using
the date format specified by date.fmt.
When lband and uband are already of zoo class, the values provided by dates
over-write the original dates of the objects.

R2 125

date.fmt OPTIONAL. Character indicating the format of dates. See format in as.Date.

bands.col See polygon. Color to be used for filling the area between the lower and upper
uncertainty bound.

border See polygon. The color to draw the border. The default, ’NULL’, means to use
’par("fg")’. Use ’border = NA’ to omit borders.

... further arguments passed to the polygon function for plotting the bands, or from
other methods

Note

It requires the hydroTSM package

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

See Also

pfactor, rfactor

Examples

Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Selecting only the daily values belonging to the year 1961
obs <- window(obs, end=as.Date("1961-12-31"))

Generating the lower and upper uncertainty bounds
lband <- obs - 5
uband <- obs + 5

Not run:
plot(obs, type="n")
plotbandsonly(lband, uband)
points(obs, col="blue", cex=0.6, type="o")

End(Not run)

R2 Coefficient of determination

Description

coefficient of determination between sim and obs, with treatment of missing values.

126 R2

Usage

R2(sim, obs, ...)

Default S3 method:
R2(sim, obs, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
R2(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
R2(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
R2(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).

R2 127

3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value numeric value to be added to both sim and obs when epsilon.type="otherValue".

Details

The coefficient of determination (R2) is the proportion of the variation in the dependent variable
that is predictable from the independent variable(s).

It is a statistic used in the context of statistical models whose main purpose is either the prediction of
future outcomes or the testing of hypotheses, on the basis of other related information. It provides
a measure of how well observed outcomes are replicated by the model, based on the proportion of
total variation of outcomes explained by the model.

The coefficient of determination is a statistical measure of how well the regression predictions
approximate the real data points. An R2 of 1 indicates that the regression predictions perfectly fit
the data.

Values of R2 outside the range 0 to 1 occur when the model fits the data worse than the worst
possible least-squares predictor (equivalent to a horizontal hyperplane at a height equal to the mean
of the observed data). This occurs when a wrong model was chosen, or nonsensical constraints
were applied by mistake.

Value

Coefficient of determination between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the coefficient of determination
between each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

https://en.wikipedia.org/wiki/Coefficient_of_determination

Box, G.E. (1966). Use and abuse of regression. Technometrics, 8(4), 625-629. doi:10.1080/00401706.1966.10490407.

https://en.wikipedia.org/wiki/Coefficient_of_determination

128 R2

Hahn, G.J. (1973). The coefficient of determination exposed. Chemtech, 3(10), 609-612. Aailable
online at: https://www2.hawaii.edu/~cbaajwe/Ph.D.Seminar/Hahn1973.pdf.

Barrett, J.P. (1974). The coefficient of determination-some limitations. The American Statistician,
28(1), 19-20. doi:10.1080/00031305.1974.10479056.

See Also

cor

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
R2(sim, obs)

obs <- 1:10
sim <- 2:11
R2(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'R2' for the "best" (unattainable) case
R2(sim=sim, obs=obs)

##################
Example 3: R2 for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

R2(sim=sim, obs=obs)

##################
Example 4: R2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

R2(sim=sim, obs=obs, fun=log)

https://www2.hawaii.edu/~cbaajwe/Ph.D.Seminar/Hahn1973.pdf

R2 129

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
R2(sim=lsim, obs=lobs)

##################
Example 5: R2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

R2(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
R2(sim=lsim, obs=lobs)

##################
Example 6: R2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
R2(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
R2(sim=lsim, obs=lobs)

##################
Example 7: R2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
R2(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
R2(sim=lsim, obs=lobs)

##################
Example 8: R2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying a

130 rd

user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

R2(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
R2(sim=sim1, obs=obs1)

rd Relative Index of Agreement

Description

This function computes the Relative Index of Agreement (d) between sim and obs, with treatment
of missing values.
If x is a matrix or a data frame, a vector of the relative index of agreement among the columns is
returned.

Usage

rd(sim, obs, ...)

Default S3 method:
rd(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
rd(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
rd(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
rd(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

rd 131

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the Nash-Sutcliffe efficiency.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying FUN.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by FUN without the addition of any nummeric
value.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying FUN, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying FUN.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying FUN.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

rd = 1−

∑N
i=1

(
Oi−Si

Oi

)2

∑N
i=1

(
|Si−Ō|+|Oi−Ō|

Ō

)2

It varies between 0 and 1. A value of 1 indicates a perfect match, and 0 indicates no agreement at
all.

132 rd

Value

Relative index of agreement between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the relative index of agreement
between each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation.

If some of the observed values are equal to zero (at least one of them), this index can not be com-
puted.

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Krause, P.; Boyle, D.P.; Base, F. (2005). Comparison of different efficiency criteria for hydrological
model assessment, Advances in Geosciences, 5, 89-97. doi:10.5194/adgeo-5-89-2005.

Willmott, C.J. (1981). On the validation of models. Physical Geography, 2, 184–194. doi:10.1080/02723646.1981.10642213.

Willmott, C.J. (1984). On the evaluation of model performance in physical geography. Spatial
Statistics and Models, G. L. Gaile and C. J. Willmott, eds., 443-460. doi:10.1007/978-94-017-
3048-8_23.

Willmott, C.J.; Ackleson, S.G. Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell,
J.; Rowe, C.M. (1985), Statistics for the Evaluation and Comparison of Models, J. Geophys. Res.,
90(C5), 8995-9005. doi:10.1029/JC090iC05p08995.

Legates, D.R.; McCabe, G. J. Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in Hy-
drologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241. doi:10.1029/1998WR900018.

See Also

d, md, dr, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
rd(sim, obs)

obs <- 1:10

rd 133

sim <- 2:11
rd(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'rd' for the "best" (unattainable) case
rd(sim=sim, obs=obs)

##################
Example 3: rd for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

rd(sim=sim, obs=obs)

##################
Example 4: rd for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

rd(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
rd(sim=lsim, obs=lobs)

##################
Example 5: rd for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

rd(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rd(sim=lsim, obs=lobs)

134 rfactor

##################
Example 6: rd for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
rd(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rd(sim=lsim, obs=lobs)

##################
Example 7: rd for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
rd(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rd(sim=lsim, obs=lobs)

##################
Example 8: rd for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

rd(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
rd(sim=sim1, obs=obs1)

rfactor R-factor

rfactor 135

Description

R-factor represents the average width of the given uncertainty bounds divided by the standard de-
viation of the observations.

Ideally, i.e., with a combination of model structure and parameter values that perfectly represents
the catchment under study, and in absence of measurement errors and other additional sources of
uncertainty, all the simulated values should be in a perfect match with the observations, leading to
a P-factor equal to 1, and an R-factor equal to zero. However, in real-world applications we aim at
encompassing as much observations as possible within the given uncertainty bounds (P-factor close
to 1) while keeping the width of the uncertainty bounds as small as possible (R-factor close to 0),
in order to avoid obtaining a good bracketing of observations at expense of uncertainty bounds too
wide to be informative for the decision-making process.

Usage

rfactor(x, ...)

Default S3 method:
rfactor(x, lband, uband, na.rm=TRUE, ...)

S3 method for class 'data.frame'
rfactor(x, lband, uband, na.rm=TRUE, ...)

S3 method for class 'matrix'
rfactor(x, lband, uband, na.rm=TRUE, ...)

Arguments

x ts or zoo object with the observed values.

lband numeric, ts or zoo object with the values of the lower uncertainty bound

uband numeric, ts or zoo object with the values of the upper uncertainty bound

na.rm logical value indicating whether ’NA’ values should be stripped before the com-
putation proceeds.

... further arguments passed to or from other methods.

Value

Average width of the given uncertainty bounds, given by lband and uband, divided by the standard
deviation of the observations x

If sim and obs are matrixes, the returned value is a vector, with the R-factor between each column
of sim and obs.

Note

So far, the argument na.rm is not being taken into account.

136 rfactor

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. (2009), Assessing the impact of climate
change on water resources in Iran, Water Resources Research, 45(10), W10,434, doi:10.1029/2008WR007615.

Abbaspour, K.C., Yang, J. ; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J. ; Zobrist, J.; Srini-
vasan, R. (2007), Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed
using SWAT, Journal of Hydrology, 333(2-4), 413-430, doi:10.1016/j.jhydrol.2006.09.014.

Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. (2008b), Estimation of freshwater availability
in the West African sub-continent using the SWAT hydrologic model, Journal of Hydrology, 352(1-
2), 30, doi:10.1016/j.jhydrol.2007.12.025

Abbaspour, K.C. (2007), User manual for SWAT-CUP, SWAT calibration and uncertainty analysis
programs, 93pp, Eawag: Swiss Fed. Inst. of Aquat. Sci. and Technol. Dubendorf, Switzerland.

See Also

pfactor, plotbands

Examples

x <- 1:10
lband <- x - 0.1
uband <- x + 0.1
rfactor(x, lband, uband)

lband <- x - rnorm(10)
uband <- x + rnorm(10)
rfactor(x, lband, uband)

#############
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Selecting only the daily values belonging to the year 1961
obs <- window(obs, end=as.Date("1961-12-31"))

Generating the lower and upper uncertainty bounds, centred at the observations
lband <- obs - 5
uband <- obs + 5

rfactor(obs, lband, uband)

Randomly generating the lower and upper uncertainty bounds
uband <- obs + rnorm(length(obs))
lband <- obs - rnorm(length(obs))

rfactor(obs, lband, uband)

rmse 137

rmse Root Mean Square Error

Description

Root Mean Square Error (RMSE) between sim and obs, in the same units of sim and obs, with
treatment of missing values.
RMSE gives the standard deviation of the model prediction error. A smaller value indicates better
model performance.

Usage

rmse(sim, obs, ...)

Default S3 method:
rmse(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
rmse(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
rmse(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
rmse(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

138 rmse

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the Root Mean Square Error.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.
epsilon.type argument used to define a numeric value to be added to both sim and obs before

applying FUN.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

rmse =

√√√√ 1

N

N∑
i=1

(Si −Oi)
2

Value

Root mean square error (rmse) between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the RMSE between each column of
sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

rmse 139

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

https://en.wikipedia.org/wiki/Root_mean_square_deviation

Willmott, C.J.; Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root
mean square error (RMSE) in assessing average model performance, Climate Research, 30, 79-82,
doi:10.3354/cr030079.

Chai, T.; Draxler, R.R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?
- Arguments against avoiding RMSE in the literature, Geoscientific Model Development, 7, 1247-
1250. doi:10.5194/gmd-7-1247-2014.

Hodson, T.O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use
them or not, Geoscientific Model Development, 15, 5481-5487, doi:10.5194/gmd-15-5481-2022.

See Also

pbias, pbiasfdc, mae, mse, ubRMSE, nrmse, ssq, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
rmse(sim, obs)

obs <- 1:10
sim <- 2:11
rmse(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'rmse' for the "best" (unattainable) case
rmse(sim=sim, obs=obs)

##################
Example 3: rmse for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution

https://en.wikipedia.org/wiki/Root_mean_square_deviation

140 rmse

with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

rmse(sim=sim, obs=obs)

##################
Example 4: rmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

rmse(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
rmse(sim=lsim, obs=lobs)

##################
Example 5: rmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

rmse(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rmse(sim=lsim, obs=lobs)

##################
Example 6: rmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
rmse(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rmse(sim=lsim, obs=lobs)

##################
Example 7: rmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

rNSE 141

fact <- 1/50
rmse(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rmse(sim=lsim, obs=lobs)

##################
Example 8: rmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

rmse(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
rmse(sim=sim1, obs=obs1)

rNSE Relative Nash-Sutcliffe efficiency

Description

Relative Nash-Sutcliffe efficiency between sim and obs, with treatment of missing values.

Usage

rNSE(sim, obs, ...)

Default S3 method:
rNSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
rNSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
rNSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

142 rNSE

S3 method for class 'zoo'
rNSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values
obs numeric, zoo, matrix or data.frame with observed values
na.rm a logical value indicating whether ’NA’ should be stripped before the computa-

tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the relative Nash-Sutcliffe efficiency.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.
epsilon.type argument used to define a numeric value to be added to both sim and obs before

applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any nummeric
value.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

rNSE = 1−
∑N

i=1 (Si−Oi

Oi
)2∑N

i=1 (Oi−Ō
Ō

)2

rNSE 143

Value

Relative Nash-Sutcliffe efficiency between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the relative Nash-Sutcliffe efficiency
between each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

If some of the observed values are equal to zero (at least one of them), this index can not be com-
puted.

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Krause, P.; Boyle, D.P.; Base, F. (2005). Comparison of different efficiency criteria for hydrological
model assessment, Adv. Geosci., 5, 89-97. doi:10.5194/adgeo-5-89-2005.

Legates, D.R.; McCabe, G. J. Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in Hy-
drologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241. doi:10.1029/1998WR900018.

See Also

NSE, mNSE, wNSE, KGE, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
rNSE(sim, obs)

obs <- 1:10
sim <- 2:11
rNSE(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

144 rNSE

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'rNSE' for the "best" (unattainable) case
rNSE(sim=sim, obs=obs)

##################
Example 3: rNSE for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

rNSE(sim=sim, obs=obs)

##################
Example 4: rNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

rNSE(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
rNSE(sim=lsim, obs=lobs)

##################
Example 5: rNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

rNSE(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rNSE(sim=lsim, obs=lobs)

##################
Example 6: rNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01

rPearson 145

rNSE(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rNSE(sim=lsim, obs=lobs)

##################
Example 7: rNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
rNSE(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rNSE(sim=lsim, obs=lobs)

##################
Example 8: rNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

rNSE(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
rNSE(sim=sim1, obs=obs1)

rPearson Pearson correlation coefficient

Description

Pearson correlation coefficient between sim and obs, with treatment of missing values.

Usage

rPearson(sim, obs, ...)

Default S3 method:
rPearson(sim, obs, fun=NULL, ...,

146 rPearson

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
rPearson(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
rPearson(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
rPearson(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values
obs numeric, zoo, matrix or data.frame with observed values
na.rm a logical value indicating whether ’NA’ should be stripped before the computa-

tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.
epsilon.type argument used to define a numeric value to be added to both sim and obs before

applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

rPearson 147

epsilon.value numeric value to be added to both sim and obs when epsilon.type="otherValue".

Details

It is a wrapper to the cor function.

The Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correla-
tion between two sets of data.

It is the ratio between the covariance of two variables and the product of their standard deviations;
thus, it is essentially a normalized measurement of the covariance, such that the result always has a
value between -1 and 1. As with covariance itself, the measure can only reflect a linear correlation
of variables, and ignores many other types of relationships or correlations.

The correlation coefficient ranges from -1 to 1. An absolute value of exactly 1 implies that a linear
equation describes the relationship between sim and obs perfectly, with all data points lying on a
line. The correlation sign is determined by the regression slope: a value of +1 implies that all data
points lie on a line for which sim increases as obs increases, and vice versa for -1. A value of 0
implies that there is no linear dependency between the variables.

Value

Pearson correlation coefficient between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the Pearson correlation coefficient
between each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Pearson, K. (1920). Notes on the history of correlation. Biometrika, 13(1), 25-45. doi:10.2307/2331722.

Schober, P.; Boer, C.; Schwarte, L.A. (2018). Correlation coefficients: appropriate use and inter-
pretation. Anesthesia and Analgesia, 126(5), 1763-1768. doi:10.1213/ANE.0000000000002864.

See Also

cor

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

148 rPearson

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
rPearson(sim, obs)

obs <- 1:10
sim <- 2:11
rPearson(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'rPearson' for the "best" (unattainable) case
rPearson(sim=sim, obs=obs)

##################
Example 3: rPearson for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

rPearson(sim=sim, obs=obs)

##################
Example 4: rPearson for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

rPearson(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
rPearson(sim=lsim, obs=lobs)

##################
Example 5: rPearson for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant

rPearson 149

during computations

rPearson(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rPearson(sim=lsim, obs=lobs)

##################
Example 6: rPearson for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
rPearson(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rPearson(sim=lsim, obs=lobs)

##################
Example 7: rPearson for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
rPearson(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rPearson(sim=lsim, obs=lobs)

##################
Example 8: rPearson for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

rPearson(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
rPearson(sim=sim1, obs=obs1)

150 rSD

rSD Ratio of Standard Deviations

Description

Ratio of standard deviations between sim and obs, with treatment of missing values.

Usage

rSD(sim, obs, ...)

Default S3 method:
rSD(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
rSD(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
rSD(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
rSD(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

rSD 151

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

rSD =
sdsim
sdobs

Value

Ratio of standard deviations between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the ratio of standard deviations
between each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

152 rSD

See Also

sd, rsr, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
rSD(sim, obs)

obs <- 1:10
sim <- 2:11
rSD(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'rSD' for the "best" (unattainable) case
rSD(sim=sim, obs=obs)

##################
Example 3: rSD for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

rSD(sim=sim, obs=obs)

##################
Example 4: rSD for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

rSD(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
rSD(sim=lsim, obs=lobs)

rSD 153

##################
Example 5: rSD for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

rSD(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rSD(sim=lsim, obs=lobs)

##################
Example 6: rSD for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
rSD(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rSD(sim=lsim, obs=lobs)

##################
Example 7: rSD for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
rSD(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rSD(sim=lsim, obs=lobs)

##################
Example 8: rSD for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

rSD(sim=sim, obs=obs, fun=fun1)

154 rSpearman

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
rSD(sim=sim1, obs=obs1)

rSpearman Spearman’s rank correlation coefficient

Description

Spearman’s rank correlation coefficient between sim and obs, with treatment of missing values.

Usage

rSpearman(sim, obs, ...)

Default S3 method:
rSpearman(sim, obs, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
rSpearman(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
rSpearman(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
rSpearman(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values
obs numeric, zoo, matrix or data.frame with observed values
na.rm a logical value indicating whether ’NA’ should be stripped before the computa-

tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

rSpearman 155

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value numeric value to be added to both sim and obs when epsilon.type="otherValue".

Details

It is a wrapper to the cor function.

The Spearman’s rank correlation coefficient is a nonparametric measure of rank correlation (statis-
tical dependence between the rankings of two variables).

It assesses how well the relationship between two variables can be described using a monotonic
function.

The Spearman correlation between two variables is equal to the Pearson correlation between the
rank values of those two variables. However, while Pearson’s correlation assesses linear relation-
ships, Spearman’s correlation assesses monotonic relationships (whether linear or not).

If there are no repeated data values, a perfect Spearman correlation of +1 or -1 occurs when each of
the variables is a perfect monotone function of the other.

Value

Spearman’s rank correlation coefficient between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the Spearman’s rank correlation
coefficient between each column of sim and obs.

Note

obs and sim has to have the same length/dimension

156 rSpearman

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

Spearman, C. (1961). The Proof and Measurement of Association Between Two Things. In J. J.
Jenkins and D. G. Paterson (Eds.), Studies in individual differences: The search for intelligence (pp.
45-58). Appleton-Century-Crofts. doi:10.1037/11491-005

See Also

cor

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
rSpearman(sim, obs)

obs <- 1:10
sim <- 2:11
rSpearman(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'rSpearman' for the "best" (unattainable) case
rSpearman(sim=sim, obs=obs)

##################
Example 3: rSpearman for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

rSpearman 157

ggof(sim, obs)

rSpearman(sim=sim, obs=obs)

##################
Example 4: rSpearman for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

rSpearman(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
rSpearman(sim=lsim, obs=lobs)

##################
Example 5: rSpearman for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

rSpearman(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rSpearman(sim=lsim, obs=lobs)

##################
Example 6: rSpearman for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
rSpearman(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rSpearman(sim=lsim, obs=lobs)

##################
Example 7: rSpearman for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
rSpearman(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

158 rsr

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rSpearman(sim=lsim, obs=lobs)

##################
Example 8: rSpearman for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

rSpearman(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
rSpearman(sim=sim1, obs=obs1)

rsr Ratio of RMSE to the standard deviation of the observations

Description

Ratio of the RMSE between simulated and observed values to the standard deviation of the obser-
vations.

Usage

rsr(sim, obs, ...)

Default S3 method:
rsr(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
rsr(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
rsr(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'

rsr 159

rsr(sim, obs, na.rm=TRUE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Value

Ratio of RMSE to the standard deviation of the observations.

If sim and obs are matrixes, the returned value is a vector, with the RSR between each column of
sim and obs.

160 rsr

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. (2007).
Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.
Transactions of the ASABE. 50(3):885-900

See Also

sd, rSD, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
rsr(sim, obs)

obs <- 1:10
sim <- 2:11
rsr(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'rsr' for the "best" (unattainable) case
rsr(sim=sim, obs=obs)

##################
Example 3: rsr for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution

rsr 161

with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

rsr(sim=sim, obs=obs)

##################
Example 4: rsr for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

rsr(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
rsr(sim=lsim, obs=lobs)

##################
Example 5: rsr for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

rsr(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rsr(sim=lsim, obs=lobs)

##################
Example 6: rsr for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
rsr(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rsr(sim=lsim, obs=lobs)

##################
Example 7: rsr for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

162 sKGE

fact <- 1/50
rsr(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rsr(sim=lsim, obs=lobs)

##################
Example 8: rsr for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

rsr(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
rsr(sim=sim1, obs=obs1)

sKGE Split Kling-Gupta Efficiency

Description

Split Kling-Gupta efficiency between sim and obs.

This goodness-of-fit measure was developed by Fowler et al. (2018), as a modification to the origi-
nal Kling-Gupta efficiency (KGE) proposed by Gupta et al. (2009). See Details.

Usage

sKGE(sim, obs, ...)

Default S3 method:
sKGE(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012", "2021"),

start.month=1, out.PerYear=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'data.frame'
sKGE(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012", "2021"),

start.month=1, out.PerYear=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

sKGE 163

S3 method for class 'matrix'
sKGE(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012", "2021"),

start.month=1, out.PerYear=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'zoo'
sKGE(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012", "2021"),

start.month=1, out.PerYear=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

s numeric of length 3, representing the scaling factors to be used for re-scaling
the criteria space before computing the Euclidean distance from the ideal point
c(1,1,1), i.e., s elements are used for adjusting the emphasis on different com-
ponents. The first elements is used for rescaling the Pearson product-moment
correlation coefficient (r), the second element is used for rescaling Alpha and
the third element is used for re-scaling Beta

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

method character, indicating the formula used to compute the variability ratio in the
Kling-Gupta efficiency. Valid values are:
-) 2009: the variability is defined as ‘Alpha’, the ratio of the standard deviation
of sim values to the standard deviation of obs. This is the default option. See
Gupta et al. (2009).
-) 2012: the variability is defined as ‘Gamma’, the ratio of the coefficient of
variation of sim values to the coefficient of variation of obs. See Kling et al.
(2012).
-) 2021: the bias is defined as ‘Beta’, the ratio of mean(sim) minus mean(obs)
to the standard deviation of obs. The variability is defined as ‘Alpha’, the ratio
of the standard deviation of sim values to the standard deviation of obs. See
Tang et al. (2021).

start.month [OPTIONAL]. Only used when the (hydrological) year of interest is different
from the calendar year.
numeric in [1:12] indicating the starting month of the (hydrological) year. Nu-
meric values in [1, 12] represent months in [January, December]. By default
start.month=1.

out.PerYear logical, indicating whether the output of this function has to include the Kling-
Gupta efficiencies obtained for the individual years in sim and obs or not.

164 sKGE

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.

The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.

It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.

Valid values of epsilon.type are:

1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.

2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).

3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.

4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

Garcia et al. (2017) tested different objective functions and found that the mean value of the KGE
applied to the streamflows (i.e., KGE(Q)) and the KGE applied to the inverse of the streamflows
(i.e., KGE(1/Q) is able to provide a an aceptable representation of low-flow indices important for
water management. They also found that KGE applied to a transformation of streamflow values
(e.g., log) is inadequate to capture low-flow indices important for water management.

The robustness of their findings depends more on the climate variability rather than the objective
function, and they are insensitive to the hydrological model used in the evaluation.

Traditional Kling-Gupta efficiencies (Gupta et al., 2009; Kling et al., 2012) range from -Inf to 1
and, therefore, sKGE should also range from -Inf to 1. Essentially, the closer to 1, the more similar
sim and obs are.

Knoben et al. (2019) showed that traditional Kling-Gupta (Gupta et al., 2009; Kling et al., 2012)
values greater than -0.41 indicate that a model improves upon the mean flow benchmark, even if the
model’s KGE value is negative.

sKGE 165

Value

If out.PerYear=FALSE: numeric with the Split Kling-Gupta efficiency between sim and obs. If sim
and obs are matrices, the output value is a vector, with the Split Kling-Gupta efficiency between
each column of sim and obs

If out.PerYear=TRUE: a list of two elements:

sKGE.value numeric with the Split Kling-Gupta efficiency. If sim and obs are matrices,
the output value is a vector, with the Split Kling-Gupta efficiency between each
column of sim and obs

KGE.PerYear numeric with the Kling-Gupta efficincies obtained for the individual years in
sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano-Bigiarini <mzb.devel@gmail.com>

References

Fowler, K.; Coxon, G.; Freer, J.; Peel, M.; Wagener, T.; Western, A.; Woods, R.; Zhang, L. (2018).
Simulating runoff under changing climatic conditions: A framework for model improvement. Water
Resources Research, 54(12), 812-9832. doi:10.1029/2018WR023989.

Gupta, H. V.; Kling, H.; Yilmaz, K. K.; Martinez, G. F. (2009). Decomposition of the mean squared
error and NSE performance criteria: Implications for improving hydrological modelling. Journal of
hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003.

Kling, H.; Fuchs, M.; Paulin, M. (2012). Runoff conditions in the upper Danube basin under an en-
semble of climate change scenarios. Journal of Hydrology, 424, 264-277, doi:10.1016/j.jhydrol.2012.01.011.

Pushpalatha, R., Perrin, C., Le Moine, N. and Andreassian, V. (2012). A review of efficiency criteria
suitable for evaluating low-flow simulations. Journal of Hydrology, 420, 171-182. doi:10.1016/j.jhydrol.2011.11.055.

Pfannerstill, M.; Guse, B.; Fohrer, N. (2014). Smart low flow signature metrics for an improved
overall performance evaluation of hydrological models. Journal of Hydrology, 510, 447-458. doi:10.1016/j.jhydrol.2013.12.044.

Santos, L.; Thirel, G.; Perrin, C. (2018). Pitfalls in using log-transformed flows within the sKGE
criterion. doi:10.5194/hess-22-4583-2018

Knoben, W.J.; Freer, J.E.; Woods, R.A. (2019). Inherent benchmark or not? Comparing Nash-
Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-
4331. doi:10.5194/hess-23-4323-2019.

See Also

KGE, KGElf, KGEnp, gof, ggof

166 sKGE

Examples

##################
Example 1: Looking at the difference between 'method=2009' and 'method=2012'
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Simulated daily time series, initially equal to twice the observed values
sim <- 2*obs

KGE 2009
KGE(sim=sim, obs=obs, method="2009", out.type="full")

KGE 2012
KGE(sim=sim, obs=obs, method="2012", out.type="full")

sKGE (Fowler et al., 2018):
sKGE(sim=sim, obs=obs, method="2012")

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'sKGE' for the "best" (unattainable) case
sKGE(sim=sim, obs=obs)

##################
Example 3: sKGE for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

sKGE(sim=sim, obs=obs)

##################
Example 4: sKGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

sKGE(sim=sim, obs=obs, fun=log)

Verifying the previous value:

sKGE 167

lsim <- log(sim)
lobs <- log(obs)
sKGE(sim=lsim, obs=lobs)

##################
Example 5: sKGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

sKGE(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
sKGE(sim=lsim, obs=lobs)

##################
Example 6: sKGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
sKGE(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
sKGE(sim=lsim, obs=lobs)

##################
Example 7: sKGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
sKGE(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
sKGE(sim=lsim, obs=lobs)

##################
Example 8: sKGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

168 ssq

fun1 <- function(x) {sqrt(x+1)}

sKGE(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
sKGE(sim=sim1, obs=obs1)

##################
Example 9: sKGE for a two-column data frame where simulated values are equal to
observations plus random noise on the first half of the observed values

SIM <- cbind(sim, sim)
OBS <- cbind(obs, obs)

sKGE(sim=SIM, obs=OBS)

##################
Example 10: sKGE for each year, where simulated values are given in a two-column data
frame equal to the observations plus random noise on the first half of the
observed values
SIM <- cbind(sim, sim)
OBS <- cbind(obs, obs)
sKGE(sim=SIM, obs=OBS, out.PerYear=TRUE)

ssq Sum of the Squared Residuals

Description

Sum of the Squared Residuals between sim and obs, with treatment of missing values.

Its units are the squared measurement units of sim and obs.

Usage

ssq(sim, obs, ...)

Default S3 method:
ssq(sim, obs, na.rm = TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
ssq(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

ssq 169

S3 method for class 'matrix'
ssq(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
ssq(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

170 ssq

Details

ssr =

N∑
i=1

(Si −Oi)
2

Value

Sum of the squared residuals between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the SSR between each column of
sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Willmott, C.J.; Matsuura, K.; Robeson, S.M. (2009). Ambiguities inherent in sums-of-squares-
based error statistics, Atmospheric Environment, 43, 749-752, doi:10.1016/j.atmosenv.2008.10.005.

See Also

pbias, pbiasfdc, mae, mse, rmse, ubRMSE, nrmse, gof, ggof

Examples

obs <- 1:10
sim <- 1:10
ssq(sim, obs)

obs <- 1:10
sim <- 2:11
ssq(sim, obs)

##################
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

ubRMSE 171

Computing the 'rNSeff' for the "best" (unattainable) case
ssq(sim=sim, obs=obs)

Randomly changing the first 2000 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)

Computing the new 'rNSeff'
ssq(sim=sim, obs=obs)

ubRMSE Unbiased Root Mean Square Error

Description

unbiased Root Mean Square Error (ubRMSE) between sim and obs, in the same units of sim and
obs, with treatment of missing values.

ubRMSE was introduced by Entekhabi et al. (2010) to improve the evaluation of the temporal dy-
namic of volumentric soil moisture, by removing from the traditional RMSE the mean bias error
caused by the mistmatch between the spatial representativeness of in situ soil moisture and the cor-
responding gridded values.

A smaller value indicates better model performance.

Usage

ubRMSE(sim, obs, ...)

Default S3 method:
ubRMSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
ubRMSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
ubRMSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
ubRMSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

172 ubRMSE

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the Root Mean Square Error.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying FUN.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value numeric value to be added to both sim and obs when epsilon.type="otherValue".

Details

The traditional root mean square error (RMSE) is severely compromised if there are biases in either
the mean or the amplitude of fluctuations of the simulated values. If it can be estimated reliably, the
mean-bias (BIAS) can easily be removed from RMSE, leading to the unbiased RMSE:

ubRMSE =
√
RMSE2 −BIAS2

Value

Unbiased Root mean square error (ubRMSE) between sim and obs.

If sim and obs are matrixes or data.frames, the returned value is a vector, with the ubRMSE between
each column of sim and obs.

ubRMSE 173

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. (2010). Performance metrics for soil mois-
ture retrievals and application requirements. Journal of Hydrometeorology, 11(3), 832-840. doi:
10.1175/2010JHM1223.1.

Ling, X.; Huang, Y.; Guo, W.; Wang, Y.; Chen, C.; Qiu, B.; Ge, J.; Qin, K.; Xue, Y.; Peng,
J. (2021). Comprehensive evaluation of satellite-based and reanalysis soil moisture products us-
ing in situ observations over China. Hydrology and Earth System Sciences, 25(7), 4209-4229.
doi:10.5194/hess-25-4209-2021.

See Also

pbias, pbiasfdc, mae, mse, rmse, nrmse, ssq, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
ubRMSE(sim, obs)

obs <- 1:10
sim <- 2:11
ubRMSE(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'ubRMSE' for the "best" (unattainable) case
ubRMSE(sim=sim, obs=obs)

##################
Example 3: ubRMSE for simulated values equal to observations plus random noise

174 ubRMSE

on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

ubRMSE(sim=sim, obs=obs)

##################
Example 4: ubRMSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

ubRMSE(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
ubRMSE(sim=lsim, obs=lobs)

##################
Example 5: ubRMSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

ubRMSE(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
ubRMSE(sim=lsim, obs=lobs)

##################
Example 6: ubRMSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
ubRMSE(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
ubRMSE(sim=lsim, obs=lobs)

##################
Example 7: ubRMSE for simulated values equal to observations plus random noise

valindex 175

on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
ubRMSE(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
ubRMSE(sim=lsim, obs=lobs)

##################
Example 8: ubRMSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

ubRMSE(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
ubRMSE(sim=sim1, obs=obs1)

valindex Valid Indexes

Description

Identify the indexes that are simultaneously valid (not missing) in sim and obs.

Usage

valindex(sim, obs, ...)

Default S3 method:
valindex(sim, obs, ...)

S3 method for class 'matrix'
valindex(sim, obs, ...)

Arguments

sim zoo, xts, numeric, matrix or data.frame with simulated values

176 ve

obs zoo, xts, numeric, matrix or data.frame with observed values

... further arguments passed to or from other methods.

Value

A vector with the indexes that are simultaneously valid (not missing) in obs and sim.

Note

This function is used in the functions of this package for removing missing values from the observed
and simulated time series.

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>

See Also

is.na, which

Examples

sim <- 1:5
obs <- c(1, NA, 3, NA, 5)
valindex(sim, obs)

ve Volumetric Efficiency

Description

Volumetric efficiency between sim and obs, with treatment of missing values.

Usage

VE(sim, obs, ...)

Default S3 method:
VE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
VE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

ve 177

S3 method for class 'matrix'
VE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
VE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

178 ve

Details

V E = 1−
∑N

i=1 |Si −Oi|∑N
i=1 (Oi)

Volumetric efficiency was proposed in order to circumvent some problems associated to the Nash-
Sutcliffe efficiency. It ranges from 0 to 1 and represents the fraction of water delivered at the proper
time; its compliment represents the fractional volumetric mistmach (Criss and Winston, 2008).

Value

Volumetric efficiency between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the Volumetric efficiency between
each column of sim and obs.

Note

obs and sim have to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Criss, R.E.; Winston, W.E. (2008), Do Nash values have value? Discussion and alternate proposals.
Hydrological Processes, 22: 2723-2725. doi:10.1002/hyp.7072.

See Also

gof, ggof, NSE

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
VE(sim, obs)

obs <- 1:10
sim <- 2:11
VE(sim, obs)

##################
Example 2:

ve 179

Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'VE' for the "best" (unattainable) case
VE(sim=sim, obs=obs)

##################
Example 3: VE for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

VE(sim=sim, obs=obs)

##################
Example 4: VE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

VE(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
VE(sim=lsim, obs=lobs)

##################
Example 5: VE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

VE(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
VE(sim=lsim, obs=lobs)

##################
Example 6: VE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant

180 wNSE

during computations

eps <- 0.01
VE(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
VE(sim=lsim, obs=lobs)

##################
Example 7: VE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
VE(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
VE(sim=lsim, obs=lobs)

##################
Example 8: VE for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

VE(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
VE(sim=sim1, obs=obs1)

wNSE Weighted Nash-Sutcliffe efficiency

Description

Weighted Nash-Sutcliffe efficiency between sim and obs, with treatment of missing values.

This goodness-of-fit measure was proposed by Hundecha and Bardossy (2004) to put special focus
on high values.

wNSE 181

Usage

wNSE(sim, obs, ...)

Default S3 method:
wNSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
wNSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
wNSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
wNSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the weighted Nash-Sutcliffe efficiency.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying FUN.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).

182 wNSE

3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the mean of the observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

wNSE = 1−
∑N

i=1Oi ∗ (Si −Oi)
2∑N

i=1Oi ∗ (Oi − Ō)2

Value

Weighted Nash-Sutcliffe efficiency between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the relative Nash-Sutcliffe efficiency
between each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

If some of the observed values are equal to zero (at least one of them), this index can not be com-
puted.

Author(s)

sluedtke (github user)

References

Nash, J.E. and J.V. Sutcliffe, River flow forecasting through conceptual models. Part 1: A discus-
sion of principles, J. Hydrol. 10 (1970), pp. 282-290. doi:10.1016/0022-1694(70)90255-6.

Hundecha, Y., Bardossy, A. (2004). Modeling of the effect of land use changes on the runoff
generation of a river basin through parameter regionalization of a watershed model. Journal of
hydrology, 292(1-4), 281-295. doi:10.1016/j.jhydrol.2004.01.002.

wNSE 183

Hundecha, Y., Ouarda, T. B., Bardossy, A. (2008). Regional estimation of parameters of a rainfall-
runoff model at ungauged watersheds using the ’spatial’ structures of the parameters within a canon-
ical physiographic-climatic space. Water Resources Research, 44(1). doi:10.1029/2006WR005439.

Hundecha, Y. and Merz, B. (2012), Exploring the Relationship between Changes in Climate and
Floods Using a Model-Based Analysis, Water Resour. Res., 48(4), 1-21, doi:10.1029/2011WR010527..

See Also

NSE, rNSE, mNSE, KGE, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
wNSE(sim, obs)

obs <- 1:10
sim <- 2:11
wNSE(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'wNSE' for the "best" (unattainable) case
wNSE(sim=sim, obs=obs)

##################
Example 3: wNSE for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

wNSE(sim=sim, obs=obs)

##################
Example 4: wNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

184 wNSE

wNSE(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
wNSE(sim=lsim, obs=lobs)

##################
Example 5: wNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

wNSE(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
wNSE(sim=lsim, obs=lobs)

##################
Example 6: wNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
wNSE(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
wNSE(sim=lsim, obs=lobs)

##################
Example 7: wNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
wNSE(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
wNSE(sim=lsim, obs=lobs)

##################
Example 8: wNSE for simulated values equal to observations plus random noise

wsNSE 185

on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

wNSE(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
wNSE(sim=sim1, obs=obs1)

wsNSE Weighted seasonal Nash-Sutcliffe Efficiency

Description

Weighted seasonal Nash-Sutcliffe Efficiency between sim and obs, with treatment of missing val-
ues.

This function is designed to identify differences in high or low values, depending on the user-defined
value given to the lambda argument. See Usage and Details.

Usage

wsNSE(sim, obs, ...)

Default S3 method:
wsNSE(sim, obs, na.rm=TRUE,

j=2, lambda=0.95, lQ.thr=0.6, hQ.thr=0.1, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'data.frame'
wsNSE(sim, obs, na.rm=TRUE,

j=2, lambda=0.95, lQ.thr=0.6, hQ.thr=0.1, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'matrix'
wsNSE(sim, obs, na.rm=TRUE,

j=2, lambda=0.95, lQ.thr=0.6, hQ.thr=0.1, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'zoo'
wsNSE(sim, obs, na.rm=TRUE,

j=2, lambda=0.95, lQ.thr=0.6, hQ.thr=0.1, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

186 wsNSE

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

j numeric, representing an arbitrary value used to power the differences between
observations and simulations. By default j=2, which mimics the traditional
Nash-Sutcliffe function, mainly focused on thr representation of high values.
For low flows, suggested values for j are 1, 1/2 or 1/3. See Legates and Mc-
Cabe, (1999) and Krausse et al. (2005) for a discussion of suggested values of
j.

lambda numeric in [0, 1] representing the weight given to the high observed values. The
closer the lambda=1 value is to 1, the higher the weight given to high values. On
the contrary, the closer the lambda=1 value is to 0, the higher the weight given
to low values.
Low values get a weight equal to 1-lambda. Between high and low values there
is a linear transition from lambda to 1-lambda, respectively.
Suggested values for lambda are lambda=0.95 when focusing in high (stream-
flow) values and lambda=0.05 when focusing in low (streamflow) values.

lQ.thr numeric, representing the non-exceedence probabiliy used to identify low flows
in obs. All values in obs that are equal or lower than quantile(obs, probs=(1-lQ.thr))
are considered as low values. By default lQ.thr=0.6.
On the other hand, the low values in sim are those located at the same i-th
position than the i-th value of the obs deemed as low flows.

hQ.thr numeric, representing the non-exceedence probabiliy used to identify high flows
in obs. All values in obs that are equal or higher than quantile(obs, probs=(1-hQ.thr))
are considered as high flows. By default hQ.thr=0.1.
On the other hand, the high values in sim are those located at the same i-th
position than the i-th value of the obs deemed as high flows.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.

wsNSE 187

2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

The weighted seasonal Nash-Sutcliffe Efficiency was proposed by Zambrano-Bigiarini and Bellin
(2012), inspired by the well-known Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970), and
the commentaries made by Schaefli and Gupta (2007) and Criss and Winston (2008).

This function gives different weights to the high/low values in the (obs_i - sim_i) terms used in
the Nash-Sutcliffe formula, using high weights for high or low flows, depending on how close the
user-defined ’lambda’ value is to 1 or zero, respectively. Between high and low values there is a
linear transition from lambda to 1-lambda, respectively.

Following the traditional Nash-Sutcliffe efficiency, the weighted seasonal Nash-Sutcliffe Efficiency
(wsNSE) ranges from -Inf to 1, with an optimal value of 1. Higher values of wsNSE indicate lower
differences between sim and obs. Essentially, the closer to 1, the more similarsim and obs are.

Value

numeric with the the weighted seasonal Nash-Sutcliffe Efficiency (wsNSE) between sim and obs. If
sim and obs are matrices, the output value is a vector, with the the weighted seasonal Nash-Sutcliffe
Efficiency (wsNSE) between each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano-Bigiarini <mzb.devel@gmail.com>

188 wsNSE

References

Zambrano-Bigiarini, M.; Bellin, A. (2012). Comparing goodness-of-fit measures for calibration
of models focused on extreme events. EGU General Assembly 2012, Vienna, Austria, 22-27 Apr
2012, EGU2012-11549-1.

Nash, J.E.; J.V. Sutcliffe. (1970). River flow forecasting through conceptual models. Part 1: a
discussion of principles, Journal of Hydrology 10, pp. 282-290. doi:10.1016/0022-1694(70)90255-
6.

Schaefli, B.; Gupta, H. (2007). Do Nash values have value?. Hydrological Processes 21, 2075-2080.
doi:10.1002/hyp.6825.

Criss, R. E.; Winston, W. E. (2008), Do Nash values have value?. Discussion and alternate propos-
als. Hydrological Processes, 22: 2723-2725. doi:10.1002/hyp.7072.

Yilmaz, K. K.; Gupta, H. V.; Wagener, T. (2008), A process-based diagnostic approach to model
evaluation: Application to the NWS distributed hydrologic model, Water Resources Research, 44,
W09417, doi:10.1029/2007WR006716.

Krause, P.; Boyle, D.P.; Base, F. (2005). Comparison of different efficiency criteria for hydrological
model assessment, Advances in Geosciences, 5, 89-97. doi:10.5194/adgeo-5-89-2005.

Legates, D.R.; McCabe, G. J. Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in Hy-
drologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241. doi:10.1029/1998WR900018.

See Also

NSE, wNSE, wsNSE, APFB, KGElf, gof, ggof

Examples

##################
Example 1: Looking at the difference between 'KGE', 'NSE', 'wNSE', 'wsNSE',
'APFB' and 'KGElf' for detecting differences in high flows

Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Simulated daily time series, created equal to the observed values and then
random noise is added only to high flows, i.e., those equal or higher than
the quantile 0.9 of the observed values.
sim <- obs
hQ.thr <- quantile(obs, probs=0.9, na.rm=TRUE)
hQ.index <- which(obs >= hQ.thr)
hQ.n <- length(hQ.index)
sim[hQ.index] <- sim[hQ.index] + rnorm(hQ.n, mean=mean(sim[hQ.index], na.rm=TRUE))

Traditional Kling-Gupta eficiency (Gupta and Kling, 2009)
KGE(sim=sim, obs=obs)

Traditional Nash-Sutcliffe eficiency (Nash and Sutcliffe, 1970)
NSE(sim=sim, obs=obs)

wsNSE 189

Weighted Nash-Sutcliffe efficiency (Hundecha and Bardossy, 2004)
wNSE(sim=sim, obs=obs)

wsNSE (Zambrano-Bigiarini and Bellin, 2012):
wsNSE(sim=sim, obs=obs)

APFB (Mizukami et al., 2019):
APFB(sim=sim, obs=obs)

##################
Example 2: Looking at the difference between 'KGE', 'NSE', 'wsNSE',
'dr', 'rd', 'md', 'APFB' and 'KGElf' for detecting differences in low flows

Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Simulated daily time series, created equal to the observed values and then
random noise is added only to low flows, i.e., those equal or lower than
the quantile 0.4 of the observed values.
sim <- obs
lQ.thr <- quantile(obs, probs=0.4, na.rm=TRUE)
lQ.index <- which(obs <= lQ.thr)
lQ.n <- length(lQ.index)
sim[lQ.index] <- sim[lQ.index] + rnorm(lQ.n, mean=mean(sim[lQ.index], na.rm=TRUE))

Traditional Kling-Gupta eficiency (Gupta and Kling, 2009)
KGE(sim=sim, obs=obs)

Traditional Nash-Sutcliffe eficiency (Nash and Sutcliffe, 1970)
NSE(sim=sim, obs=obs)

Weighted seasonal Nash-Sutcliffe efficiency (Zambrano-Bigiarini and Bellin, 2012):
wsNSE(sim=sim, obs=obs, lambda=0.05, j=1/2)

Refined Index of Agreement (Willmott et al., 2012):
dr(sim=sim, obs=obs)

Relative Index of Agreement (Krause et al., 2005):
rd(sim=sim, obs=obs)

Modified Index of Agreement (Krause et al., 2005):
md(sim=sim, obs=obs)

KGElf (Garcia et al., 2017):
KGElf(sim=sim, obs=obs)

##################
Example 3:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970

190 wsNSE

data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'wsNSE' for the "best" (unattainable) case
wsNSE(sim=sim, obs=obs)

##################
Example 4: wsNSE for simulated values created equal to the observed values and then
random noise is added only to high flows, i.e., those equal or higher than
the quantile 0.9 of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

wsNSE(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
wsNSE(sim=lsim, obs=lobs)

##################
Example 5: wsNSE for simulated values created equal to the observed values and then
random noise is added only to high flows, i.e., those equal or higher than
the quantile 0.9 of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

wsNSE(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
wsNSE(sim=sim1, obs=obs1)

Index

∗ datasets
EgaEnEstellaQts, 31

∗ dplot
ggof, 32
plot2, 118
plotbands, 121
plotbandsonly, 124

∗ math
APFB, 8
br2, 12
cp, 17
d, 22
dr, 26
ggof, 32
gof, 40
HFB, 49
KGE, 53
KGEkm, 60
KGElf, 68
KGEnp, 73
mae, 78
md, 83
me, 86
mNSE, 90
mse, 94
nrmse, 98
NSE, 103
pbias, 107
pbiasfdc, 112
pfactor, 116
R2, 125
rd, 130
rfactor, 134
rmse, 137
rNSE, 141
rPearson, 145
rSD, 150
rSpearman, 154
rsr, 158

sKGE, 162
ssq, 168
ubRMSE, 171
valindex, 175
ve, 176
wNSE, 180
wsNSE, 185

∗ package
hydroGOF-package, 3

APFB, 4, 8, 46, 52, 188
as.Date, 32, 122, 125

br2, 4, 12, 38, 46

cor, 15, 128, 147, 155, 156
cp, 4, 17, 38, 46

d, 3, 22, 29, 38, 46, 85, 132
dr, 3, 24, 26, 38, 46, 85, 132
drawTimeAxis, 34, 119, 123

EgaEnEstellaQts, 31

fdc, 114

ggof, 10, 15, 24, 29, 32, 38, 46, 52, 57, 64, 71,
76, 81, 85, 88, 92, 96, 100, 105, 110,
114, 120, 121, 132, 139, 143, 152,
160, 165, 170, 173, 178, 183, 188

gof, 10, 15, 19, 24, 29, 38, 40, 52, 57, 64, 71,
76, 81, 85, 88, 92, 96, 100, 105, 110,
114, 132, 139, 143, 152, 160, 165,
170, 173, 178, 183, 188

HFB, 4, 10, 46, 49
hydroGOF (hydroGOF-package), 3
hydroGOF-package, 3

is.na, 176

191

192 INDEX

KGE, 4, 38, 41, 46, 53, 64, 71, 76, 92, 105, 143,
165, 183

KGEkm, 4, 41, 46, 60
KGElf, 4, 38, 41, 46, 57, 64, 68, 76, 165, 188
KGEnp, 4, 38, 46, 57, 64, 71, 73, 165

lm, 15

mae, 3, 38, 46, 78, 88, 96, 100, 110, 114, 139,
170, 173

md, 3, 24, 29, 38, 46, 83, 132
me, 3, 38, 46, 86
mNSE, 3, 38, 41, 46, 90, 105, 143, 183
mNSeff (mNSE), 90
mse, 3, 38, 46, 81, 94, 100, 110, 114, 139, 170,

173

nrmse, 3, 38, 41, 46, 81, 96, 98, 110, 114, 139,
170, 173

NSE, 3, 10, 38, 46, 52, 56, 92, 103, 143, 178,
183, 188

NSeff (NSE), 103

par, 34, 120
pbias, 3, 38, 46, 81, 96, 100, 107, 110, 114,

139, 170, 173
pbiasfdc, 4, 38, 41, 46, 81, 96, 100, 110, 112,

139, 170, 173
pfactor, 4, 116, 123, 125, 136
plot.default, 123
plot.zoo, 120
plot2, 38, 118
plot_pq, 121
plotbands, 118, 121, 136
plotbandsonly, 124
points, 123
polygon, 122, 125

R2, 4, 15, 38, 46, 125
rd, 3, 24, 29, 38, 46, 85, 130
rfactor, 4, 118, 123, 125, 134
rmse, 3, 38, 46, 81, 96, 100, 110, 114, 137,

170, 173
rNSE, 3, 38, 46, 92, 105, 141, 183
rNSeff (rNSE), 141
rPearson, 4, 15, 38, 46, 145
rSD, 3, 38, 46, 150, 160
rSpearman, 4, 15, 38, 46, 154
rsr, 3, 38, 46, 152, 158

sd, 152, 160
sKGE, 4, 38, 41, 46, 57, 64, 71, 76, 162
ssq, 4, 81, 96, 100, 110, 114, 139, 168, 173

title, 119

ubRMSE, 3, 38, 46, 81, 96, 100, 110, 114, 139,
170, 171

valindex, 175
VE, 4, 38, 46
VE (ve), 176
ve, 176

which, 176
wNSE, 3, 10, 38, 46, 52, 92, 105, 143, 180, 188
wsNSE, 3, 10, 41, 46, 52, 185, 188

	hydroGOF-package
	APFB
	br2
	cp
	d
	dr
	EgaEnEstellaQts
	ggof
	gof
	HFB
	KGE
	KGEkm
	KGElf
	KGEnp
	mae
	md
	me
	mNSE
	mse
	nrmse
	NSE
	pbias
	pbiasfdc
	pfactor
	plot2
	plotbands
	plotbandsonly
	R2
	rd
	rfactor
	rmse
	rNSE
	rPearson
	rSD
	rSpearman
	rsr
	sKGE
	ssq
	ubRMSE
	valindex
	ve
	wNSE
	wsNSE
	Index

